Protective Design - Mandatory Center of Expertise
Technical Report 92-4

Facility And Component Explosive
Damage Assessment Program

(FACEDAP)
Programmer’s Manual

Version 1.2

SwRI Project No. 06-5145-001
Contract No. DACA 45-91-D-0019

Prepared for:

Department of the Army

Corps of Engineers, Omaha District
CEMRO-ED-ST

215 N. 17th Street

Omaha, Nebraska 68102-4978

Modified May 1994

[ttt - T
0ea” CHEEEIRAAMLIWR ¢ 4% T3,
SN GECK 1N wrilVM T TeislLS
0" WFTERE @ 14" L5

1"w” W TN @ 8T LI

T I

1" W 1TURE @ 47 1.0,
(1N, GA MEATRE Paiul WY LeTEN)

WALL SECTION

[TESRT] -

1 ORISMAACTG & 43" I.5.

Protective Design - Mandatory Center of Expertise
Technical Report 92-4

waoh ORCH) wiagmea T Teim L1
Fie® AAFTIRS & 08° L.
1"m wll ITOE @ 187 DL

Facility And Component Explosive | waLL sEcTion
Damage Assessment Program

(FACEDAP)

Programmer’s Manua

SwRI Project No. 06-5145-001
Contract No. DACA 45-91-D-00)9

Prepared for:

Department of the Army

Corps of Engineers, Omaha Digfrict
CEMRO-ED-ST

215 N. 17th Street

Omaha, Nebraska 681024978

April 1993

Table of Contents

Page
LSt Of FAGUIES ©vueemmeermeisseciec e riact e et sseesases st e s s s L S s s iti
LLIST OF TADLES o.neeieeeeeeeeeeeeeseeeesvossasissseersanssssessss o s bssransn s as soaasaas sas e nee s sanarasaarmd et et sostnnns iii
1.0 TOITOGUCHION orrvevreenrseeensreseneeessssses st esses st smss s sssss s s s 1
2.0 Flow Diagrams for the Primary Executables in the FACEDAP Codecocoveennneee 3
3.0 Software Used to Program the FACEDAP Code ...cococoniniininnninniienniinnssie e 4
4.0 Modifying the Problem Size Which Can be Analyzed with the
FACEDAP COE ...ooovorecreriiireenreterseseranesessnscesmssssinssssrsssasesssssrsssnsene saessssssstsussssnssassos 4
5.0 Compiling and Linking the FACEDAP COdEccooeveermmniinmeninninicssneisennses 9
RELETEIICES vvvrveiveeveereuirisisseersesssessnesnsssesasessnssnstesnsessntesssrnesss iieseasarstrabsasansatssarssosssssses 12

Appendix A: Indented Calling Trees for the FACEDAP Program

A-1:
A-2:
A-3:
A4
A-5:
A-6:

Indented Calling Tree for the FACEDAP Driver \

Indented Calling Tree for BDAMPREP.EXE in the FACEDAP Preprocess Module
Indented Calling Tree for VALIDFIL.EXE in the FACEDAP Module

Indented Calling Tree for MAKEBDMA .EXE in the FACEDAP Analysis Module
Indented Calling Tree for BDAMA EXE in the FACEDAP Analysis Module
Indented Calling Tree for BDAMPOST.EXE in the FACEDAP Postprocess Module

Appendix B: Description of Primary Subroutines Called in the FACEDAP Code

Table of Contents

(Continued)
List of Figures
Figure Page
1 Flow Diagram for FACEDAP Program DIIvVerccovimmmeeniniennn 2
List of Tables
Table Page
1 Files Containing Dimensions Which Control Program Sizeccoceeviinninne. 5
2 Major Arrays and Matrices in the FACEDAP Codeccooniviininiicnnccnnnnens 7
3 Matrices in BDAMA EXE with Dimensions that Control Program Size 9
4 Information on Linking Major FACEDAP Executables and Output Files

Created During Program EXecution ... estiineinsesersennes 11

1.0 Introduction

The purpose of this manual is to familiarize the reader with the basic architecture of the
FACEDAP computer code. The information in the manual includes: 1) a detailed flow diagram
and description of the primary programs and subroutines in the FACEDAP code; 2) a description
of the software used by the code; 3) a description of the matrices and arrays which have dimensions
which control the maximum problem size that can be run in the FACEDAP code; and, 4) instructions
on compiling and linking the primary executables in the code. This manual is intended to be read
in conjunction with the FACEDAP User’s Manual [1], the FACEDAP Theory Manual [2], the
IOSUB User’s Manual [3], and the ESHELL User’s Manual [4]. The FACEDAP User’s Manual
[1] describes use of the FACEDAP program and includes; one worked example problem, thirteen
example buildings with example input files that are included on the program disk, and a listing of
all error messages with explanation. The FACEDAP Theory Manual [2] discusses and assesses
the theoretical approach used to determine building vulnerability to blast damage in the FACEDAP
program . The IOSUB User's Manual [3] and ESHELL User’s Manual {4] describe subroutines in
these software packages which are used to control screen display in the FACEDAP code and run
the FACEDAP driver using a minimum amount of computer memory.

The FACEDAP program is an approximate procedure for determining the vulnerability of
common structural components and industrial buildings to explosive threats. It is not intended for
use in blast resistant design or in any other situations where high accuracy is required. If the single
component analysis option is invoked, the program calculates the blast damage to an input
component from an input explosive threat using a procedure which is based on available
experimental data and basic dynamic structural response theory. If the building analysis option is
invoked, the building vulnerability, in terms of the percentage of building damage caused by the
explosive threat, is calculated by the program in a two-step procedure. In the first step, the damage
to each component in the building is calculated. In the second step, the calculated damage to each
component is summed and divided by a value corresponding to total building failure to determine
the percentage of building damage. Building reusability and replacement factors and the level of
protection provided to assets within the building arc also calculated. The theoretical approach used
by the FACEDAP program is assessed and discussed in detail in the FACEDAP Theory Manual[2].
As the FACEDAP User’s Manual [1] explains, input of the relatively large amount of required
building information is facilitated by the FACEDAP program preprocessor, which automatically
generates many building components, only requires input of unique building component properties
sets, and automatically generates "dependencies” that define how building components support,
and are supported by, other components.

The FACEDAP computer code consists of a driver, FACEDAP.EXE, three primary
processors; the Preprocessor, the Analysis program, the Postprocessor; and a minor executable and
several subroutines which set default configuration values and retrieve existing input files. These
processors are illustrated in Figure 1. The exccutables in each processor shown in Figure 1 are
"child programs” which are run, one at a time, as designated by input from the user into the driver
program. Ingeneral, eachchild program reads a file on the hard disk with required input information,
performs various calculations using the input information and additional information input by the
user, displays some calculated information on the screen, and writes an output file which is used
as input by one of the other child programs. The FACEDAP driver also allows the user to retrieve

1 Revision 1.2
5/20/94

File

BDAMPREP . EXE
VALIDFIL.EXE

Figure 1. Flow Diagram for FACEDAP Program Driver

Preprocess COMPREP .EXE

VALIDFLZ .EXE

MAKEBDMA . EXE

FACEDAP.EXE Analysais BDAMA .EXE
BDAMPOST .EXE

Postprocess BDAMPSTC .EXE

Utilities FACECFG.EXE

Revision 1.2
5120/94

previous input files, establish program default directories, default printers, default print
communications ports, set default screen colors, and shell out to DOS. These capabilities are
included in the boxes marked "utilities” and "files" in Figure 1.

The FACEDAP Preprocessor reads all information defining the explosive charge weight
and location and the components exposed to blast loading. In the case of a building analysis, the
Preprocessor uses the fact that most buildings are comprised of a relatively small number of "unique"
building components, which are used repetitively throughout the building construction, to reduce
the effort required to input the required information. The user must initially break the building into
large, planar wall/roof areas which are defined by four comer coordinates. All subsequent building
input and output is initially defined in terms of one of the wall/roof areas and then in terms of
components within that wall/roof area. This allows the user to more easily "manage" the relatively
large amounts of detailed building information which must be input without the aid of a graphical
display. It also allows the coordinates of building component endpoints to be input in terms of a
local two-dimensional coordinate system in each wall/roof area rather than in terms of the global,
three-dimensional coordinate system.

There are many checks built into the Preprocessor which issue warnings to the user during
input if there appears to be an error in the input. The Preprocessor also makes extensive use of the
IOSUB software, which has pre-coded subroutines that display user friendly form-type and
spreadsheet-type screens to accept input. Finally, the Preprocessor includes a validation program
which checks the user input and provides a specific error message for each error that is found. The
FACEDAP program input can be simplified further in the future by the addition of a graphics
package, which displays the spatial location and properties of input components. The availability
of a graphics package would also enhance the program output.

If no errors are found by the validation program, the user can run the BDAMA EXE program
in the block labeled "Analysis" in Figure 1. This executable calculates building damage using the
two-step procedure explained above. After the analysis has been completed, the Postprocessor
displays building or single component blast damage information and blast load information. The
Postprocessor makes extensive use of the IOSUB software to display blast damage information on
each building component from a building analysis on spreadsheet-type screens in terms of the
user-defined wall/roof areas of the building.

2.0 Flow Diagrams for the Primary Executables in the FACEDAP Code

Appendix A shows Calling Trees for each of the primary executables in the FACEDAP
Code. Appendix A-1 shows the Calling Tree for the FACEDAP driver. Appendix A-2 shows the
Calling Tree for BDAMPREDP, the main Building Analysis Preprocessor executable. Appendix
A-3 shows the Calling Tree for VALIDFIL, the primary Building Analysis error checking
executable. Both BDAMPREP and VALIDFIL are part of the Preprocess module as shown in
Figure 1. Appendix A-4 shows the Calling Tree for MAKEBDMA, which uses the information
input into the Building and Single Component Preprocessors to write an input file for the BDAMA
executable. Appendix A-5shows the Calling Tree for BDAMA, which analyzes the building damage
caused by the input explosive charge. Appendix A-6 shows the Calling Tree for the Building
Analysis Postprocessor, BDAMPOST, which displays the calculated results. Appendices A-7
through A-9 show the Calling Trees for the Single Component Analysis executables. Appendix

3 Revision 1.2
5/20/94

A-7 is the Calling Tree for COMPPREP, which is the Singie Component Analysis Preprocessor.
The Single Component Analysis Validation routine, VALIDFL2, Calling Tree is shown in A-8.
Appendix A-9 shows the Calling Tree for the Single Component Analysis Postprocessor,
BDAMPSTC, which displays the component damage results.

The Calling Tree for the FACEDAP driver, in Appendix A- 1, will be used as an example
toillustrate how the Calling Trees in Appendix A and the subroutine purpose statements in Appendix
B describe the flow of the FACEDAP program. The main program in the FACEDAP driver, which
is also called FACEDARP, is the first program shown in the Calling Tree. This program calls the
eleven indented subroutines shown below it. The order of these cleven subroutines is alphabetical,
not the order in which the subroutines are invoked. All subroutines in the executables which call
other subroutines follow the main program in the Calling Tree in alphabetical order. In the
FACEDAP driver, two subroutines, namely CHGDIR1 and CHILDI, call other subroutines and
therefore they are shown in alphabetical order under the main program with the (indented)
subroutines they call. The calling arguments and the purpose of the subroutines shown in all the
Calling Trees in Appendix A are listed and described in alphabetical order in Appendix B except
as noted in the next two (2) paragraphs. The reader can understand the function CHGDIR1 by
looking up this subroutine in Appendix B and reading the purpose statement. This standard method
of presenting a program flow diagram is well suited for complex programs like the FACEDAP code
which involve many subroutine calls.

Subroutines in the Calling Trees which are taken from the IOSUB software package without
modification are described in the IOSUB User’s Manual [3]. Only IOSUB subroutines which are
used for overlay purposes, or are modified versions of the original IOSUB subroutine, are included"
in Appendix B. Filenames of modified IOSUB routines have a "B" proceeding the filename, such
as BSPREAD.FOR instead of SPREAD.FOR. The subroutine call statement and the subroutine
name within these files are not changed. The Calling Trees in Appendix A where generated by a
useful IOSUB program called MKTRE. More information on this routine may be found in the
IOSUB User’s Manual.

Appendix C contains the routines which were added when the Single Component Analysis
was added. Refer to Appendix C when an "*" appears following the subroutine/function name in
the Calling Tree.

30 Software Used to Program the FACEDAP Code

The FACEDAP code is written in Microsoft Fortran, Version 5.1. Asmentioned previously,
many of the subroutines in the IOSUB software package are called by the FACEDAP code. These
pre-coded subroutines, which are also written in Microsoft Fortran, control the most of the input
and output in the code. Compiled versions of these subroutines are in the IOSUB libraries included
on the FACEDAP Source Disk. A complete description of the IOSUB subroutines is included in
Reference 3. Subroutines in the ESHELL software, which contain logic that minimizes the amount
of memory used by the FACEDAP driver program, arc linked with the driver program. This software
enables all but approximately 3K bytes of the Driver program, FACEDAP EXE, to be unloaded
from memory while each child program is running, freeing more memory for the child programs.

4 Revision 1.2
520/94

None of the software in the ESHELL package is referenced in the Calling Tree in Appendix A-1.
The ESHELL software, which is marketed by Kandu, Inc., is discussed in Reference 4. The IOSUB
software is marketed by Business Systems Integration, in San Antonio, Texas.

4.0 Modifying the Problem Size Which Can be Analyzed with the FACEDAP Code

The FACEDAP Source Disk contains all program source files written or modified during
this project, the ESHELL and IOSUB libraries which are linked with executables in the FACEDAP
program, and batch files which contain the Microsoft Fortran compile and link commands necessary
to build the program executables. Therefore, this disk contains all the code a user needs to modify
the FACEDAP code and rebuild it. This section and the following sections contain programming
information which helps explain the framework of the code. Most of the major matrices and arrays
in the program are dimensioned using variables which are only defined once in an "include” file
with the extension .INC. The only exceptions are the matrices in the BDAMA.EXE program, which
are dimensioned in each subroutine where they are used as discussed at the end of this section. This
makes it possible to change the size of arrays and matrices, and therefore the size of problem, by
just changing the variables controlling the dimensions of the matrix in the appropriate include file.
Table 1 shows the names of variables which define the dimensions of the major matrices and arrays,
explains their use and their current values, and shows the files where they are located. Items 3, 5,
and 6, in Table 1 refer to numbers in the SPRDHEAD.DAT and/or SPRDHED2.DAT data files
which control the size of spreadsheets with input/output information that are displayed on the screen.
These numbers are located in the header lines of the given spreadsheets in the SPRDHEAD.DAT
and SPRDHED? files. Spreadsheets are defined in this file by their numerical order in the file.”
NOTE: SPRDHEAD.DAT is used by the Building Analysis executable. SPRDHED2.DAT is
used by the Single Component Analysis executable. The difference in these files is that the Single
Component Analysis does not require Weighting Factors. Instead, a Span Length is required. In
the Single Component Analysis the Span Length replaced the Weighting Factor unless the Span
Length was already present, in which case the Weighting Factor was just deleted.

Table 2 shows the major matrices and arrays in the FACEDAP Code. It also shows the
parameters in Table 1 which control the dimensions of the matrices, the variable type which is
stored, and the purpose of each array or matrix. Major matrices in the BDAMA.EXE executable
are shown separately in Table 3. The values of variables defining the maximum array and matrix
dimensions in Table 2 have been carefully chosen so that most typical buildings can be input without
exceeding the limits of the code. They have also been chosen to both limit the memory required
by each separate child program so that the computer operating system and other typical background
programs can run at the same time as the FACEDAP code, and allow each child programto maintain
all required storage information in memory.

In spite of the efforts described above, it may still be necessary to increase the size of the
maximum problem which can be analyzed with the FACEDAP code. The matrix dimensions which
are considered most likely to require modification are those controlling the maximum number of
components that can be input into the FACEDAP program in a single run and the sizes of the
spreadsheet-type input/output screens. Item 1 in Table 1 shows that the FACEDAP code is currently
set up so that it will analyze a maximum of 370 building components. This maximum causes the
array, COMPG, which stores the building component information, to be very near the 64,000 byte
limit for a matrix which is maintained in a single block of computer memory. As Tables 1 and 2

5 Revision 1.2
5/20/94

Table 1. Files Containing Dimensions Which Control Program Size

ITEM
NO. VARIABLE FILE VALUE DESCRIPTION

1 max_num_components BDAMLINC 370 Total components

2 max_wall_areas BDAMLINC 50 Wall/Roof areas

3 Number of Rows in Input SPRDHEAD.DAT 150 Components per wall
Screens for Building area
Geometry (Spreadsheet
26,28-34)

4 max_xmp_row XMP.INC 150 Unique sets of

component properties
(total)

5 Number of Rows in Input SPRDHEAD.DAT 100 Component property sets
Screens for Component SPRDHED2.DAT per component type
Properties (Spreadsheets
1-24)

6 Number of Rows in SPRDHEAD.DAT & 50 Number of generated
Spreadsheet 27 & BDAM.INC components from a
max_generated_pairs master component

7 max_depend_pairs & BDAM.INC & 200 Total dependency pairs
dimension statements in BDAMA subroutines
BDAMA (see Table 3)

8 max_column_ever SPREAD.INC 17 Maximum columns on

any spreadsheet

9 Max_row_ever SPREAD.INC 150 Maximum rows on any

spreadsheet

10 total_spread_sheets SPREAD.INC 34 Maximum number of

spreadsheets

11 max_bdama_components & | POSTPROCESSOR 400 Maximum oumber of
dimension statements in SUBROUTINES & components as allowed
BDAMA BDAMA Subroutines by BDAMA

(see Table 3)
6 Revision 1.2

5/20/94

C

Table 2. Major Arrays and Matrices in the FACEDAP Code

FILE WITH
ITEM|{ MATRIX |VARIABLE ROW COLUMN DIMENSIONING
NO. NAME TYPE DIMENSION DIMENSION PARAMETERS PURPOSE OF MATRIX

1 xmp char*10 max_xmp_row max_xmp_col XMP.INC Storage array for component
properties

2 wall_table char*11 max_row_ever max_column_ever WALLD.INC Storage and spreadsheet
array for wall/roof area
definitions

3 compg char*10 |max_num_components | max_column_ever COMPG.INC Storage array for component
geometry and dependency
data

4 spread_table int 17 total_spread_sheets SPREAD.INC Contains option instructions
for each column of each
spreadsheets

5 work_table char®11 max_row_ever max_column_ever SPREADT.INC Work array used for
displaying spreadsheets

~ 6 load_buf char*10 4 N/A LOADBUFF.INC | Form array used for load

definitions

7 problem_buf char*70 4 N/A PROBBUFF.INC | Form array for title and
descriptions

8 damage_buf char*8 4 N/A BDAMPOST.FOR | Form array for building
damage

9 clink int max_xmp_row N/A CLINK.INC Linklist for the XMP array

10 mlink int max_num_components N/A LINKLIST.INC | Linklist for the COMPG
array

11 comp_def_buf } char*31 3 N/A COMPDEF.INC | Form array used for
component selection in the

Single Component Analysis
Program

60T/
T'1 votsIAzy

show, COMPG is a 370 x 17 matrix, where each stored field is 10 characters, so that 62,900 bytes
of memory is required to store this matrix. The COMPG matrix can be modified to store more
building components by creating a separate mairix which stores the last four columns in the
COMPG array and creating a pointer which links the corresponding rows in COMPG and in the
new matrix. Column 1-13 in the COMPG matrix store component geometry data and columns
14-17 store the component dependencies.

Spreadsheet-type input screens, which are simply referred to as spreadsheets, are used in
the Building and Single Component Preprocessors and the Building Postprocessor for input and
output of building/component information. Each spreadsheet is defined by a Spreadsheet Number
which refers to its position in the SPROHEAD.DAT and SPRDHED2.DAT files. These files define
the number of Tows, number of columns, number of header lines, text in the column headers, text
in the help messages, defauits input values and several other pieces of information for each
spreadsheet. All spreadsheets, with the exception of WALL_TABLE, are displayed by the
BSPREAD.FOR subroutine using the matrix, WORK_TABLE, which can be referred to as a work
area. This work area is equivalenced to other matrices. However, the maximum dimension of any
spreadsheet is governed by the dimensions of WORK_TABLE.

Ttems 3, 5, 6, in Table 1 show the current number of rows for each spreadsheet in the
SPRDHEAD.DAT and/or SPRDHED2.DAT files. The maximum number of rows in any
spreadsheet can be increased up to a maximum of 150 rows by changing the number of rows in the
header line of the given spreadsheet in the SPRDHEAD.DAT and SPRDHED? files. The limit for
the maximum number of rows in a spreadsheet is set with the parameter max_row_ever in Table
1. The number of columns displayed to the screen for any given spreadsheet can be increased up’
to the Limit of 17 columns using the steps shown below. The limit on the maximum number of
columns in a spreadsheet is set with the parameter max_column_ever in Table 1.

1) Update SPRDHEAD.DAT and SPRDHED2.DAT - Change the
number of columns in the header line of the given spreadsheet in the
SPRDHEAD.DAT and SPRDHED2.DAT file. See the purpose
statement for subroutine GETSPRED in Appendix B for an
explanation of how the various spreadsheets and header lines are
stored in these files.

2) Update QPTIONTB.DAT and OPTION2. DAT - These files contain
information controlling special options that apply to each column in
each spreadsheet. Each line in this file controls options for the
spreadsheet in the SPROHEAD.DAT and SPRDHED2.DAT files.
The option control parameters on the second line, for example, control
the second spreadsheet called by the program. Update the option
control parameters for each new spreadsheet column as explained in
the comment statements at the top of the BDAMPREP.FOR and
BDAMPOST.FOR files. OPTIONTB.DAT is used for the Building
Analysis and OPTION2.DAT is used for the Single Component
‘Analysis.

8 Revision 1.2
5/20/94

N

3) Update GETVARS.FOR and GETVARSZ.FOR - Column numbers
used for default calculations in spreadsheets must be updated in
GETVARS.FOR for the Building Analysis spreadsheets and
GETVARS2.FOR for the Single Component Analysis spreadsheets.

4) Update CALCDEFS FOR - Formulas used to calculate default

component properties in the first 24 spreadsheets in
SPRDHEAD.DAT and SPRDHED2.DAT must be updated with new
variable numbers as per assignment in GETVARS.FOR and
GETVARS2.DAT.

5) Updaie CONVAPRT.FOR - Update EXCLUDE COL and
MAX_COMP_COL arrays. EXCLUDE_COL is used to determine
columns on the spreadsheet that are character types and therefore do
not need conversion from character to real or integer. This routine is
used to print the Preprocessor reports. NOTE: The data staternent
contains the excludes for the Building Analysis spreadsheets. These
excludes are modified using assignment statements when this routine
is used for a Single Component Analysis spreadsheets.

6) Update VALIDCMP - Update the EXCLUDE_COL and
MAX_COMP_COL matrices. EXCLLUDE _COL is used to determine
which columns on the spreadsheet are excluded from the check for a
0 value. MAX_COMP_COL contains the maximum number of
columns displayed on each spreadsheet and is used for looping control
when checking columns with EXCLUDE_COL. NOTE: The data
statement contains the excludes for the Building Analysis
spreadsheets. These excludes are modified using assignment
statemnents when this routine is used for a Single Component Analysis
spreadsheets.

7) Re-link BDAMPREP using LXBDAMP.
8) Re-link VALIDFIL using LXVALID.

9)
executable if the information read into the new columns affects these
subroutines.

The ramifications of increasing the number of columns in a given spreadsheet above the
current 17 column limit are much more extensive. All the storage matrices, XMP, COMPG, and
WORK_TABLE, must be increased as well as several data files and subroutines. As previously
pointed out, COMPG is already extremely close to the maximum size which can be contained in a
single block of memory so it is not advisable to take this step with out making the suggested storage
changes in COMPG.

9 Revision 1.2
5/20/94

The BDAMA.EXE executable, which is shown in the Analysis block in Figure 1, was
written during a previous project and does not pass any information using common blocks. The
sponsor of this work precluded the use of common blocks and therefore matrices and arrays are
dimensioned separately in each subroutine where they are used. Modifications were made during
the development of the FACEDAP code but they did not affect the structure of this executable.
Table 3 shows the major matrices in this executable, the subroutines where they are dimensioned,
and their current values.

Table 3. Matrices in BDAMA.EXE with Dimensions that Control Program Size

ITEM NO.| MATRIX | SUBROUTINE | DIMENSION

1 dam COMPD.FOR (400,8)
COMPR.FOR
OUTPOST.FOR
SUM.FOR
BDAMI1.FOR

2 newdep DEPMOD.FOR (400,2)

3 idep DEPMOD.FOR (200,2)
BDAMI1.FOR
DEPIN.FOR
READAT.FOR

50 Compiling and Linking the FACEDAP Code

The subroutines shown in the Calling Trees in Appendix A control the input, output, and
calculation scheme of the FACEDAP code. These files are all included on the FACEDAP Source
Disk with root names which consist of the subroutine names shown in the Calling Trees followed
by the extension .FOR. The Source Disk also includes files with the extensions .BAT, .LNK, and
INC, and .DAT, which are needed in order to compile and link the FACEDAP code. All the files
required to build any of the FACEDAP code executables are in the archived file FACECODE.ZIP
on the source disk. This disk includes a README.DOC file with instructions on how to unarchive
the individual files from FACECODE.ZIP using the PKUNZIP.EXE file which is also on the source
disk.

The .INC files contain common blocks that pass variables, arrays, and matrices between
subroutines in the code (except in BDAMA EXE where there are no common blocks). These files,
which are called "include" files, are referenced with the fortran INCLUDE statement in all
subroutines where the common blocks in the files are used. Information required by the FACEDAP
code to set up input and output screens is programmed into files with the extension .DAT. The

10 Revision 1.2
5/20/94

DAT files are ASCII character files which contain headings and help messages displayed by
Preprocessor and Postprocessor screens as well as control parameters which define the size of each
spreadsheet display.

The .BAT files contain the Microsoft Fortran compile and link commands necessary to
build the executables in the FACEDAP code. During the development stage of the program,
compilation was done using.the FPC.BAT file provided on the Source Disk. This batch file contains
the following two statements:

f1 /FPi [Fs fZi /Ge /Gt70 /¢ f4ccd /4YD /Od /4Yd /G2 % 1.for
rem fl /FPi /Fs /Zi /Ge /Gt70 /c /Od /4Yd /G2 %1 .for

The first line contains the compilation staternent for what is considered the full debugging mode.
This staternent causes extended error handling and bounds checking to be performed. The second
line is a partial debug. It does not perform any bounds checking or extended error handling. Both,
however, disable the compiler optimization and require that all variables be declared. Both methods
generate the symbolic information required by the Microsoft CodeView Debugger. The remark
command, REM, can be switched to remark out the command which is not used. The link method
used while in the debuggmg mode aiso enables CodeView. The following statement shows the
link text used.

link /CO /SE:512

The size of the executable generated in these modes is much larger than that generated in
the production mode. The compilation command for the production mode, which is shown below,
is contained in FPCPRO,BAT on the Source Disk.

1 /FPi /Gt70 /G2 /c %1 for

This command invokes the compiler optimizer and removes ail Code View requirements. The link
used for the production mode packs the executable in order to reduce the size of the executable. .

link /SE:5 12 /EXEPACK

Table 4 shows the link batch files (LX*.BAT files) required to create a new version of each
of the executables included in the FACEDAP code. This table aiso shows the files created and read
by each executable during execution. Most of the files which are created during execution have a
user designated root name (the name entered as the "save file" name) which is referred to Table 4
with an asterisk. The LX*.BAT files have both debug mode and production mode link statements
in them. One of these statément should always be remarked out.

Most of these link batch files invoke a *.LNK file, which is the link response file. The
asterisk refers to the name of the executable which is generated with the file. These link response
files list all the subroutines and the IOSUB and ESHELL libraries that are required in the link
command which creates the executable. Prior to running any of the link batch files, the user must
compile all .FOR files required by the executable using Microsoft Fortran. The .INC files referenced
in the subroutines that are linked, as well as IOSUB and ESHELL libraries on the FACEDAP Source
Disk, must also be available in the directory where the executable is linked .

i1 Revision 1.2
520/94

To facilitate having the required files for generating an executable, batch files were created
to extract the required files from the FACECODE.ZIP source archive. By running the appropriate
batch file, all FORTRAN, include, libraries and batch files necessary for the executable generation,
will be extracted and placed in the current directory. This prevents having to have all source files
present when only one executable is to be modified.

Table 4. Information on Linking Major FACEDAP Executables and Output Files
Created During Program Execution

EXECUTABLE
FILE NAME

EXTRACT
BATCH FILE

LINK BATCH
FILE

INPUT FILES

OUTPUT

FACEDAPEXE

XFACE.BAT

LXFACE.BAT

FACE.CFG
MAINTITL.DAT
*BLG

BDAMPREP EXE

XPREPB.BAT

LXBDAMP.BAT

FACE.CFG
OPTIONTB.DAT
SPRDHEAD DAT
PRBTITLE.FRM
LOADDEF.FRM

*BLG

VALIDFIL.EXE

XVALIDB.BAT

LXVALID.BAT

FACE.CFG
*BLG

*BLG

MAKEBDMA.EXE

XMAKEB.BAT

LXMAKEB.BAT

FACE.CFG
*BLG

BDAMALIN

BDAMA.EXE

XBDAMA.BAT

LXBDAMA BAT

*BLG
BDAMA.IN

*PST

BDAMPOST.EXE

XPOSTB.BAT

LXPOST2.BAT

FACE.CFG
OPTIONTB.DAT
SPRDHEAD.DAT
BUILDAM2.FRM
LOADPOST.FRM

*BLG
*PST

* REP

COMPPREP EXE

XPREPC.BAT

LXPREP2.BAT

FACE.CFG
OPTION2.DAT
SPRDHED2.DAT
PRBTITLE.FRM
LOADCOMPFRM
COMPDEF FRM
COMP*BLG

COMP* BLG
COMP* REP

VALIDFL2EXE

XVALIDC.BAT

LXVALID2 BAT

FACE.CFG
COMP* BLG

COMP*BLG
COMP* ERR

BDAMPSTCEXE

XPOSTC.BAT

LXPOSTC.BAT

FACE.CFG
BUILDAMC.FRM
LOADCMPPFRM

COMP* .BLG
COMP* PST

COMP* REP

* Indicates User assigned probiem name, which is assigned in the Preprocessor, BDAMPREP.EXE
or COMPPREP.EXE.

12

Revision 1.2

5R0/94

C

vin References ;!

ues £
N, i

Oswald, C.J., and Skerhut, IS¢ "FACEDAP rtflser s manual,” Contract No. DACA
45-91-D-0019, U.S. Army Corps’iﬂ’f Engineers, Omaha District, April 1993.

Oswald, C.J., "FACEDAP Thcoi';%/lanual," Conéact No. DACA 45-91-D-0019, U.S. Army
Corps of Engineers, Omaha District, April 1993.

vith Microsoft™ Fortran, Version

20 Uscr s Manual Busmess -17-4 Integrauon. San tomo TX.

Emm&hﬂlcmn.l.l.mmmm Kandu Inc., Hamilton, NJ.
B I

!

A1

«|
¥}
»

)I

xlb

13 Revision 1.2
5/20/94

Appendix A

Indented Calling Trees for the FACEDAP Program

Appendix A-1

Indented Calling Tree for the FACEDAP Driver

facedap
chgdirl
child
clng
cls
curof
curon
dialog
erabox
fclose
fdel
fopen
fsize
getlun
getmod
hlpmsg
idtme
imcoff
inpfil
isxlire
isylim
magbox
popmen
putstr
rdecfg
stdmsg
wrcfg

chgdirl
chdir
clng
dialog
edtfld
erabox
getdir
mkdir
msgbox

childl
clng
cls
espath
getcur
getmod
hlpmsg
idtme
imecoff

Appendix A-2

Indented Calling Tree for BDAMPREP.EXE in the FACEDAP Preprocess Module

bdamprep
buildgeo
charge
chgatrx
chgdirl
clng
cls
compprop
curof
curon
dialog
editform
erabox
filexist
getarg
getdata
getlun
getmod
hlpmsg
i2chr
idtme
imcoff
inpfil
isxlim
isylim
msgbox
prepprnt
putstr
rdcfg
repasc
reset
savedata
setmod
showme
ucase
bselect
chrwin
clng
drawbo
fucase
getmod
ismpos
putstr
readke
repasc
sort_st
srchf
stdmsag
winchr
bsetmsk
repasc
bshowme
chrwin
cmpos
drawbo
fucase
getmod
putstr
readke
stdmag
ucase
winchr
bspread

chgatr
chrwin
clng
curof
curon
dialog
drawbo
drawhl
drawvl
erabox
getinp
getmod
hlpmsg
idtme
imcoff
msgbox
putstr
repasc
right3j
spreadop
strwin
winchr
winstr
buildgeco
cdepend
clng
cls
compdef
dialog
erabox
framdef
getwname
hlpmeg
i2chr
leftj
msgbox
putstr
showme
strwin
walldef
winstr
wnindex
xyz2
xyzcoord
calcdefs
clng
cperror
hlpmag
rightj
cdepend
clng
cls
erabox
gendpnd
getdpnd
getspred
hlpmag
iZ2chr
ktdpnd
ktwdpnd
msgbox
ptdepend
putstr
rightj

spread
strwin
winstr
centerln
clng
hlpmsg
left
repasc
charge
cing
editform
erabox
hlpmag
chgdirl
chdir
clng
dialeg
edtfld
erabox
getdir
mkdir
msgbox
chk2way
clng
gtxmprow
hlipmsg
left]
wnindex
xyz2
chkcomp
clng
hlpmsg
i2chr
itypechk
left]
rightj
chkmastr
clng
delgen
dialog
gt compgr
leftj
compdef
chkcomp
chkmastr
cling
cls
dialog
gen
genit
getspred
gtgroup
hlpmsg
left]
msgbox
ptgroup
putstr
repasc
spread
stdmseg
atrwin
updatgen
winstr
xylimit

Appendix A-2

Indented Calling Tree for BDAMPREP.EXE in the FACEDAP Preprocess Module

compprop
clng
cls
erabox
getspred
gtmat
hlpmsg
i2chr
leftj
msgbox
ptmat
putsatr
showme
spread
strwin
ucase
winstr
convdprt
¢lng
hlpmsg
CPerror
hlpmsg
cprphead
repasc
cprpprnt
clng
cprprep
erabox
hlpmsg
msgbox
showme
stdmeg
strwin
winstr
cprprep
centerln
clng
convdprt
cprphead
csort2d
hlpmsg
i2chr
left]
repasc
csort2d
delgen
clng
dellink
leftj
dellink
delwall
clng
fndwcomp
gtgroup
editform
optchk
optionb
readf
filexist
clng
erabox
getinp
hlpmsg
msgbox

(continued)

putstr
showme
ucase
£filldp
clng
i2chr
rightj
fillgeo
clng
csort2d
fndgen
fndwcomp
hlpmsg
left)
rightj
fndcomp
clng
cls
erabox
hlpmsg
i2chr
lefts
nsgbox
select
fndgen
clng
left 3
fndwcomp
clng
leftj
framdef
chkcomp
clng
cls
getspred
gtgroup
hlpmsg
leftj
msgbox
ptgroup
putstr
readke
spread
stdmag
wnindex
xylimit
gen
chr2i
clng
hlpmsg
i2¢hr
leftj
r2chr
setcid
gendpnd
clng
gtcompgr
gtxnprow
hlpmsg
ircof
lefty
wnindex
xyz2
genit

clng
cls
getspred
gtgroup
ptgroup
putstr
spread
geomprnt
centerln
clng
fillgeo
leftj
prephead
repasc
getdata
getlun
hlpmsg
getdpnd
clng
filldp
fndgen
fndwcomp
hlpmag
left]
getinp
addper
chr2i
clng
edtfld
fucase
funits
getmod
putstr
readke
repasc
setcur
setmsk
stdmag
strwin
tone
valida
winstr
getspred
¢clng
getlun
hlpmsg
repasc
getvars
getwalls
clng
hlpmag
iroof
magbox
select
getwname
clng
erabox
hlpmsg
lefciy =
msgbox
select
gtcompgr
clng
left]j

Appendix A-2

Indented Calling Tree for BDAMPREP.EXE in the FACEDAP Preprocess Module

gtfulnam
hlpmsg
leftj
gtgroup
clng
dellink
fndwcomp
hlpmsg
left]
rightj
gtmat
dellink
i2chr
gtxmprow
¢clng
hlpmsg
leftj
inslink
hlpmsg
ircof
clng
hlpmsg
itypechk
chk2way
clng
hlpmsg
iroof
wnindex
ktdpnd
clng
ktwdpnd
clng
left)
leftj
clng
hlpmsg
repasc
optchk
optionb
clng
erabox
showme
prephead
repasc
prepprnt
clng
cprppInt
dpndprnt
erabox
geocmprnt
getlun
getwname
hlpmsg
leftj
msgbox
probrep
showme
stdmsg
strwin
wallrep
winstr
ptdepend
clng
gtcompgr

(continued)
hlpmsg
leftj

ptgroup
chr2i
clng
hlpmsg
inslink
leftj
setcid
setfid
ptmat
clng
i2chr
inslink
readf
addper
clng
getinp
getmod
ismpos
mkfrm
magbox
putstr
readke
repasc
select
setmsk
strwin
swpcol
winstr
reset
repasc
right3
clng
hlpmsg
repasc
rsort2d
samecord
savedata
clng
getlun
setcid
clng
i2chr
secfid
i2chr
spreadop
calcdefs
clng
drawbo
fndcomp
getvars
getwalls
gtcompgr
gt fulnam
hlpmsg
left)
putstr
repasc
right3j
showme
stdmsg
strwin
winstr

updatgen
clng
fndwcomp
gen
gtgroup
ptgroup
wallchk
clng
hlpmsg
leftj
walldef
clng
cls
delwall
getlun
hlpmsag
i2chr
left]
magbox
putstr
repasc
samecord
spread
ucase
wallchk
wallok
wallok
clng
hipmsg
i2chr
ircof
lefts
wallrep
centerln
clng
cesort2d
hlpmsg
leftj
prephead
repasc
wnindex
clng
gtcompgr
hlpmsg
leftj
xylimit
clng
hlpmsg
xyz2
hlpmsg
xyzceord
clng
hlpmsg
leftj
wnindex

Appendix A-3

Indented Calling Tree for VALIDFIL.EXE in the FACEDAP Preprocess Module

validfil
chgatr
clng
cls
curof
curon
getarg
getdata
getlun
getmod
hlpmsg
i2echr
idtmc
imcoff
isxlim
isylim
ktdpnd
msgbox
putstr
xrdctg
repasc
review
savedata
setmod
ucaase
validchg
validcmp
validpnd
validwal
validwemp
bldgchk
clng
hlpmsg
ircof
chgloc
chk2way
clng
gtxmprow
hlpmsg
left s
wnindex
xyz2
chkcomp
clng
hlpmsg
i2chr
itypechk
left)j
rightj
compok
clng
fndgen
hlpmsg
lefts.
fndgen
clng
lefts)
getdata
getlun
hlpmsg
gtcompgr
clng
left)

gtxmprow
clng
lefts
irocof
clng
hlpmsg
itypechk
chk2way
clng
hlpmsg
iroof
wnindex
ktdpnd
clng
leftj
clng
hlpmsg
repasc
onorm
rightj
clng
hlpmsg
repasc
samecord
savedata
clng
getlun
validchg
chgloc
clng
hlpmag
iroof
onorm
validemp
clng
i2chr
left]
validpnd
clng

gtcompgr

i2chr
ktdpnd
leftj
validwal
bldgchk
clng
leftj
wallock
validwem
chkcomp
clng
compok
left]
samecord
wnindex
xylimit
xyz2
xyzcoord
wallok
clng
hlpmsg
i2chr
iroof
left]

wnindex
clng
gtcompgr
hlpmag
left]
xylimit
clng
hlpmsag
xyz2
hlpmsg
xyzcoord
clng
hlpmsg
leftj
wnindex

Appendix A-4

Indented Calling Tree for MAKEBDMA EXE in the FACEDAP Analysis Module

makebdma hlpmsg

bdamawri
bldgchk
clng
cls
curof
curon
getarg
getdata
getlun
getmod
hlpmsg
idtme
imcoff
isxlim
isylim
rdcfg
setmod
ucase

bdamawri

clng
getlun
gtxmprow
hlpmsg
ktdpnd

idtme
imcoff
isxlim
isylim
rdefy
setmod
ucase
rightj
clng
hlpmsg
repasc
rsort2d
wnindex
clng
gtcompgr
hlpmsg
leftj
xyz2
hlpmsg
xyzcoord
clng
hlpmsg
leftj
wnindex

leftj
rsort2d
wnindex
xXyz2
xyzcoord
bldgchk
clng
hlpmsg
iroof
getdata
getlun
hlpmsg
gtcompgr
clng
leftj
gtxmprow
clng
left]
ircof
clng
hlpmsg
ktdpnd
clng
leftj
clng
hlpmsg
repasc
makebdma
bdamawri
bldgchk
clng
cls
curof
curon
getarg
getdata
getlun
getmod

bdama
bdaml
bdaml
clng
compd
cempr
depin
depmcd
getarg
cutpost
readat
sum
blastpi
reflect
sideon
center
chgloc
compd
blastpi
center
chgloc
interp
onorm
compr
depin
depmod
intcol
interp
int jst
intcol
intsatl
intwd
mapili
marlwi
mar2wi
maulwi
mauZwi
onorm
outpost
rolwi
rc2wi
rchmi
rceci
rcici
ramrfi
rcpsi
readat
mapili
marlwi
mar2wi
maulwi
maulwi
rclwi
rc2wi
rcbmi
rceci
reici
remefi
rcpsi
stbmi
stedi
steci
atici

Appendix A-5

Indented Calling Tree for BDAMA.EXE in the FACEDAP Analysis Module

stmrfi
stmswi
stowji
wdbmi
wdeci
wdici
wdrfi
wdwli

reflect

sideon

stbmi

stedi

steci

stici

stmrfi

stmswi

stowji

sum

threat

wdbmi

wdeci

wdici

wdrfi

wdwli

Appendix A-6

Indented Calling Tree for BDAMPOST.EXE in the FACEDAP Postprocess Module

hdampost
bload
chgatr
clng
cls
curocf
curon
damagec
dialog
drawbo
editfrm2
erabox
genframd
getarg
getdata
getlun
getmod
hlpmsg
i2chr
idtme
imcoff
isxlim
isylim
left]
msgbox
postprnt
putstr
rdcfg
repasc
setmod
showne
stdmsg
ucase
blcad
clng
cls
edit frm2
erabox
fillblst
getspred
getwname
hlpmag
left]
msghox
putstr
showme
spread
strwin
winstr
blstrep
centerln
clng
fillblst
left]
repasc
wrthead
bselect
chrwin
clng
drawbho
fucase
getmod
ismpos

putstr
readke
repasc
sort_st
srchf
stdmsg
winchr
bsetmsk
repasc
hahowme
chrwin
cmpos
drawbo
fucase
getmod
putstr
readke
stdmsg
ucase
winchr
bapread
chgatr
chrwin
clng
curof
curon
dialog
drawbo
drawhl
drawvl
erabox
getinp
getmod
hipmsg
idtme
imcoff
nmagbox
putstr
repasc
right3j
spreadop
strwin
winchr
winstr
buildrep
centerln
clng
centerln
clng
hlpmsg
left]
repasc
caort2d
damagec
clng
cls
erabox
fillcdam
£illmdam
getspred
getwname
hlpmag
left
msgbox

putstr
showme
spread
strwin
winstr
editfrm2
optchk
cptionb2
readf
fillblst
cing
csort2d
hlpmsg
left]
rightj
filledam
clng
csort2d
hlpmsag
leftj
rightj
fillmdam
csortad
hlpmag
leftj
rightj
framekil
clng
gtxmprow
hlpmsg
leftj
wnindex
xyz2
xyzcoord
genframd
clng
framekil
gtcompgr
gtsortid
hlpmsg
lefts
msghox
getdata
getlun
hipmsg
getspred
clng
getlun
hlpmsg
repasc
getwname
clng
erabox
hlpmsg
left]
msgbox
select
gtcompgr
clng
lefts
gt fulnam
hlpmsg
left)
gtsortid

hlpmag
gtxmprow
clng
leftj
lefts
clng
hlpmsg
repasc
mdamrep
centerln
clng
fillmdam
leftj
wrthead
optchk
optionb2
postprnt
blstrep
buildrep
erabox
getwname
hlpmsg
leftj
mdamrep
msgbox
showme
stdmag
strwin
wdamrep
winatr
rightj
clng
hlpmag
repasc
spredop2
clng
drawbo
gtfulnam
hlpmsg
putstr
repasc
stdmag
strwin
winstz

Appendix A-6

{continued)

Indented Calling Tree for BDAMPOST.EXE in the FACEDAP Postprocess Module

wdamrep
centerln
clng
fillcdam
lefty
repasc
wrthead
wnindex
¢clng
gtcompgr
hlpmag
left3
wrthead
repasc
xyz2
hlpmsg
xyzcoord
clng
hlpmsg
leftj
wnindex

bsetmsk
repasc

bshowme
chrwin
cmpos
drawbo
fucase
getmod
putstr
reacke
stdmsg
ucase
winchr

bspread
chgatr
chrwin
clng
curof
curon
dialog
drawbo
drawhl
drawvl
erabox
getinp
getmod
hlpmsg
idtme
imcoff
magbox
putstr
repasc
rightj

spreadop

strwin
winchr
winstr
calcdefs
clng
cperror
hlpmsg
rightj
centerln
clng
hlpmag
leftj
repasc
chgdirl
chdir
¢clng
dialog
edt£1d
erabox
getdir
mkdir
magbox
compprep*
chgatr
chgdirl
clng
cls

compprnt

Appendix A-7

COmpPProp
curof
curon
dialog
editform
erabox
filxist2*
getarg
getcomp*
getlun
getmod
hlpmsg
i2chr
idemc
imcoff
initcomp*
inpfil2*
isxlim
isylim
left]
msgbox
putstr
rdcfg
repasc
resatc*
savecomp*
setmod
showme
ucase

compprnt

clng
cprpprnt
cselrep
erabox
getlun
hlpmsg
msghox
prcbrep2*
shownme
stdmsg
strwin
winstr

compprop

clng
cls
erabox
getspred
gtmat
hlpmsg
i2chr
left3d
msgbox
ptmat
putstr
showme
spread
strwin
ucase
winstr

conv4prt

clng
hlpmsg

cperror

hlpmag

Refer to Appendix C for descriptions of subroutines in Calling Tree followed by

cprphed2*
repasc

cprpprnt
clag
cprprep
erabox
hlpmag
msghox
showme
stdmsg
strwin
winstr

cprprep

centerln

clng
conv4prt

cprphead

csort2d
hlpmag
i2chr
left]
repasc
cselrep

centerln

clng
left§
casortd
dellink
editform
optchk
optionb
readf
filxist2*
¢lng
erabox
getinp
hlpmsg
msgbox
putstr
showme
ucase
fndcomp
clng
cls
erabox
hlpmsg
i2chr
leftj
magbox
select
getcomp*
getlun
hlpmag
getdefct*
chr2i
hlpmsg
getdefmt*
chr2i
getinp
addper
chr2i
clng
edt£fld
fucase

Indented Calling Tree for COMPREP.EXE in the FACEDAP Preprocess Module

ll* "
.

Revision 1.2
5/20/%4

C

funits
getmod
putstr
readke
repasc
setcur
setmsk
stdmsg
strwin
tone
valida
winstr
getsprd2w»
clng
getlun
hlpmsg
repasc
getvarsz>
getwalls
clng
hlpmsg
ircof
msghox
select
gtcompgr
clng
leftj
gtfulnam
hlpmsg
left)
gtmat
dellink
i2chr
gtshort*
hlpmag
leftj
gtxmprow
clng
hlpmag
left
initcomp*
chr2i
inpfil2»
clng
fcount
fdir
hlpmsg
select
inslink
hlpmsg
iroof
clng
hlpmsg
left
clng
hlpmsg
repasc
optchk
optionc*
clng
cls
erabox
fndcomp

getdefct

Appendix A-7

(Continued)

getdefmt
gtshort*
hlpmsg
putstr
showme
strwin
winstr

probrep2*

ptmat

cent.exrln
clng

clng
iZ2chr
inslink

readf

addper
clng

getinp
getmod
ismpos
mk £f:rm
magbox
putsatr
readke
repasc
select
setmsk
strwin
swpcol
winstr

resetc

repasc

rightj

clng

hlpmsg
repasc

savecomp*

chri
clng
getlun

hlpmsg
leftrj

spreadop

calcdefs
clng
drawbo
fndcomp
getvars
getwalls
gt compgr
gt. fulnam
hlpmsg
left)
putstr
repasc
rightj)
showme
stdmsg
strwin
winstrx

Indented Calling Tree for COMPREP.EXE in the FACEDAP Preprocess Module

Refer to Appendix C for descriptions of subroutines in Calling Tree followed by “*".

Revision 1.2
5/20/94

Appendix A-8
Indented Calling Tree for VALIDFL2.EXE in the FACEDAP Preprocess Module (

Refer to Appendix C for descriptions of subroutines in Calling Tree followed by "*".

getcomp*
getlun
hlpmsg

gtshort*
hlpmsg
left]j

gtxmprow
clng

hlpmasg
left]
leftj
clng
hipmsg
repaac
savecomp™
chr2i
clng
getlun
hlpmsg
lefrj
validcmp
clng
i2chr .
left] (
validfla+
chgatr
chr2i
clng
cls
curof
curon
getarg
getcomp*
getlun
getmod
gtshort*
gtxmprow
hlpmsg
i2chr
idtme
imcoff
isxlim
isylim
leftj
msgbox
putstr
rdcfg
repasc
review
savecomp*
setmod
ucase
validcmp

Revision 1.2
5/20/94

Appendix A-9
Indented Calling Tree for BDAMPSTC.EXE in the FACEDAP Postprocess Module

Refer to Appendix C for descriptions of subroutines in Calling Tree followed by "*".

»

bdamp;igadc* readke
chgatr stdmsg
¢clng ucase
cls winchr
comprep* centerln
curof clng
curon hlpmgg
dialog leftj
drawho repasc
editfrm2 compret*
erabox centerln
etar clng
geﬁccgp* editfrm2
getlun optchk
getmod optionb2
hlpmsg readf
i2¢hr getcomp*
idtme getlun
imcoff , ‘hlpmsg
isxlim leftj
isylim clng
leftj hlpmsg
msgbox cptch;epasc

)

ggz:gr oPtionbz
repasc rightj
setmod clng
showne hlpmsg
stdmsg repasc
ucase

bloadc*
editfrm2
erabox
hlpmsg
msgbox
showme
strwin
winstr

bselect
chrwin
clng
drawbo
fucase
getmod
ismpos
putstr
readke
repasc
sort_st
srchf
stdmag
winchr

bsetmak
repasc

bshowme
chrwin
cmpos
drawbo Revision 1.2
fucase 5/20/94
getmod

putstr

Appendix B

Description of Primary Subroutines Called in the FACEDAP Code
for Building Analysis and Singie Component Analysis

NOTE: Subroutines Unique to Single Component Analysis are Shown in Appendix C

Revision 1.2
5/20/94

1 e e e e e e e e e T T T T TS ST T T T T T T T T TS
2: call bdaml
3:
4: last modified -~
S: 11/08/91 ({tkb)
6: 11/19/92 (dds) - added call to outpost; opened file bdama,pst
7:
8: purpose --
9: sets up building analysis through component damage summation.
10:
11: method --
12: calls various menu subroutines to obtain desired information
i3: about problem to be solved.
14:
15: input --
16: input data file
17: and tapel5 (direct access file with individual element data)
18:
19: output --
20: tapelS: same file as input
21:
22: restrictions
23: none set in bdaml
D81 e
25: call bdamawri ()
26: function: writes output from preprocessor in output file in same
27: format used for bdama.exe read statements
28 this file also creates this sortcompg matrix which must
29: be stored on disk because it links compg in its final
30: arrangement with the id numbers used by bdama
31: this info will be needed by post-processor
32: parameters:
B3 1 e e e e e e e e e e e e e S STss s
34: call blastpi(r, w, angle, pres, imp)
35:
36: last modified -~
37: 6/11/91 {ipp)
38:
39: purpose --
40: determination of blast pressure and impulse load on a component
41:
42: method ==
43: uses fitted functions from arbrl-tr-02555 (used to fit air blast
44: curves in arlcd-sp-84001) to calculate blast pressure and impulse
45:
46: input --
47: no files, 3just variables in argument list
48:
49:; cutput --
50: no files, just variables in argument list
51:
52: restrictions --
53: x/w**(1/3) must lie between certain limits which are given in
54: subroutines side-on and reflect
55: '
BE: 0 e e e e e e e e e e e e e e S S S SS e
57: int = bldgchk (to screen, lun, fatal error, total_fatal)
58: function: to check wall area connectivity to roof and to place
59; the wall index number (from column 14 of wall table)
60: of a roof area which is connected to the roofcon |
6l: vector. this vector will have same order as wall table
62: and it is incorporated into the positions 8 & 9 of
63: column 15 of wall table. the roof connectivity is uvaed
64: in bdamawri.for to get the ’building node’

65: required by the bdama executable.
66: parameters:
67: to screen - logical variable indicates where
68: - error messages will be displayed
69: t : display to screen
70: : f : send to file indicated by logical
71: unit lun
72: lun - logical unit number for error output
73: file
74: fatal_error - logical variable indicating if fatal
75: ertor occurred. this variable is initialized once
76: at the beginning of the validation process to false
77: and set tc true each time a fatal error occurs
78: f - no error occurred
79: t - fatal error occurred
80: total_ fatal - total number of fatal errors
81: the function name returns the following:
82: bldgchk : 0 - if all wall areas are connected to
83: at least one roof area
84: 1 - if this is not the case
BE: mm e e e S S S S ST ST
g86: call Dblocad ()
87: function: provides a menu for user selection of viewing charge
88: weight and its location or viewing the blast load on
89: building components. data is stored in damage table
90: as follows:
91: non-frame components:
92: col. 1 - component type in abbreviated form
93: col. 2 - peak blast pressure to component
94: col. 3 - peak blast impulse to component (”
95: col. 4 - local xl coordinate of component
96: col. 5 - local x2 coordinate of component
97: col. 6 - local yl coordinate of component
98: col. 7 - local y2 coordinate of component
99: col. B8 - distance of component from local (0,0);
100: used for sorting the damage table (program
101: use only)
102: frame components:
103: col. 1 - component type in abbreviated form
104: col. 2 - peak blast pressure to component
105: col. 3 - peak blast impulse to component
106: col. 4 - blastward wall name
107: col. 5 - local x1 coordinate of component
108: col. 6 - local x2 coordinate of component
109: col. 7 ~- distance of component from local (0,0):
110: used for sorting the damage table (program
111: use only)
112 parameters:
113: e e e e e e e e e e S S S S S S TS T
114: call blstrep (wall_ name)
115: function: prints report on blast locad for the specified wall.
116: one report is generated. the report contains the
117: the following information depending on if the wall/xoof
118: . area is a frame:
119:
120: non-frame blast load report
121: component type
122: blast load peak pressure
123: blast load impulse
124: x1 local end or opposite corner point
125: vl local end or opposite coxner point (
126: x2 local end or opposite corner point
127: v2 local end or opposite corner peint

128:

129: frame blast load report

130: component type

131: blast load peak pressure

132: blast load impulse

133: blastward wall name

134: ' x1 local end or opposite corner point

135: vl local end or opposite corner point

1361 = e e e S e e e e
137: call select (inbuf, trow, tcol, nrow, numcol, £fldwid, -

138; numval, cption, option_no, init_menu, term key, isort)

139: business systems integration

140: (512) 680-3540

141: copyright (c} 1989, 1989, 1990, 1991, 19392

142: all rights reserved

143: = e e e e e e e e e e e
144: call setmsk (mask, type, m_len)

145: business systems integration

146: {512) 6803940

147: copyright (c) 1992

148: all rights reserved

149 e e e e e e e e e e e e e e e e e e e
150: call showme (funct, row, col, wide, numopt, optl, iopt, -

151: init_menu, term key)

152+ business systems integration

153: (512)680-3940

154:; copyright (c) 1988, 1989, 1989%0, 1991, 1982

155: all rights reserved

16561 e e e e e e e e e e e e e e e 0 7 e
157: call spread (trow, tcol, inbuf, rowhdg, rowlab, colhdg, -

158: numrow, numcol, fldwid, tit, dsprow, dspceol, celwid, -
159: coltyp, icontinue, retopt, edt, maxhead, help text, -
160: spread_table, spread no, max_rows, max_cols, dup)

161: business systems integration

162; (512) 680-3840

163: copyright (c) 1988-1992

164: : all rights reserved

165:

166: type: subroutine

167: function: permits input of data in a rectangular format

168: similar to a spreadsheet

169: parameters: trow top row of data

170: tcol top (left) column of data

171: inbuf buffer of items from which the choice is made
172: rowhdg header for row labels

173: rowlab labels for rows

174: colhdg labels for columns

175: nUMTOwW number of rows in the spreadsheet

176: numcol nunber of columns in spreadsheet

177: fldwid width of each field in the buffer

178: tit title

179: dsprow number of rows displayed

180: dspcol nunber of columns displayed

181: edt list of rows in which an edit occurred

182: maxhead number of rows used in column header {(colhdg)
183: . help text line of help text for each column

184: spreid_po programmer assigned spreadsheet number

185: max rows maximum number of rows in dimension

186 max_cols maximum number of columns in dimension

1871 e e e e e e e e e e e e R e e e
188: call buildgeo (} .
189: function: allows user definition of the following:

190: 1. building wall/roof area

191: 2. components geometry cefinition

192: 3. dependencies

N e e e e o o o o e e o M= S =SS S mm S S S S mSEmETEmmmEm L4

| Saved: 4-28-93 2:37p APPENDIX.B -4 |
B e e e e ot o o e B e e e R TR e e T S S S mSSm LSS S S EE T *
193 parameters: none (
194: = mmemmmm e m e mmmm e e e ST ST S S SSm oSS mS S S s T
195: call buildrep ()

196: function: prints report on building damage

197: parameters: none

198: e e e v o o e e S o R e e M M S S S S S S o oSS SSSmmEeT T
199: call calcdefs (calc_type, row_position, inbuf, max rows, -

200: chosen_value, error_num)

201: function: This routine calculates the a value using the eqution

202: based on calc_type. the value is converted to character
203: form and returned in chosen value. this routine is

204: called by spreadop to calculate the default value in

205: a field on a spreadsheet. error checking is performed
206: to test for a blank field or a field containing a 0.

207: parameters:

208; calc_type - contains the number of the equation

209: to be used in the calculation

210; row_peosition - current row on spreadsheet

211: inbuf - character array containing spreadsheet

212: values

213: max rows - maximum row in array used to store

214: - spreadsheet data, not necessarily the

215: number of rows displayed on the

216: spreadsheet. there could be less rows

217: displayed

218: chosen_value - returns values selected by user or

219: calculated by program

220: error_num - error flag indicator

221: 0 : no error occurred

222: 1 : error, field was blank

223: 2 : error, field was zero (
2087 memmmmmmm e e mm e e e e Mmoo oS SSSS s omSSSTmES T oo
225: call cdepend (wall_ name, wall index)

226: function: allows user computation and editing of dependenices for
227: . the specified wall/roof area. user selects/enters from
228: a list the following for each component in depend table:
229: column 1 : component type - i.e. concrete slab, concrete
230: beam, etc. (display only)

231: column 2 : local xl coordinates of end opposite corner
232: points of the component {display only)

233: column 3 : local yl coordinates of end opposite corner
234: points of the component (display only)

235: column 4 : local x2 coordinates of end opposite corner
236: points of the component {(display only}

237: column 5 : local y2 coordinates of end cpposite corner
238: points of the component (display only)

239: column 6 : dependent component id number {display only)
240: column 7-10 :

241: supporting component number(s) - up to 4

242: component numbers which will be pre-set

243: but may be edited by the user.

244: parameters:

245: wall name - name of wall/roof area user selected

246: for component definition

247: ’ wall index =~ index into the wall area used to

248: access wall number for current wall name

2497 ememmemmmmmm e mmmm e e e S oo S oS SmS oo mSSEmmEmTmm T
250: call center(xl,x2,x3,x4,xc}

251:

252: last modified --

253: 6/1/90 (map) :
254: L
255: purpose -—-

256: determines the center of an element

258: method --
259: see comments in code

261: input --
262: - arguments:
263: x1,x2,x3,x4 coordinates for element end points

265: output --
266: arguments:
267: % coordinates for element center point

269: restrictions
270: 2-way elements must be approximately rectangular
271:
2727 0 e e e e e e e e e e e e e e T e
273: call centerln ({(in line, out _line, line length)
274: function: centers the line, in line with a line that line _length
275 long and places it centered in out_line. the routine
276: may be called with the same variable for in line and
277: out_line,
2781 | e e e e e e e e e e e e R e e e e — e
279: call charge {ier)
280: function: allows user input and editing of the load definition.
281: the load definition consists of the charge weight in
282: 1bs and the charge global cocordinates in feet. the
283: form uses load buf to store character data.
284: one form is used and its input values are as follows:
285: loaddef =~ form 2
286: charge weight (£t}
287: charge location in global x direction
288: charge location in global y direction
289: charge location in global z direction
290: parameters:
291: ier - 0 : no errors occurred
292; 1 : error occurred converting data from
293: character to real. field was not
294: entered
2951 e e e e e e e e e e e e e e
296: call chgdirl (ier, directory name, directory path)
297; business systems integration copyright (¢) 1990
298; all rights reserved
299:
300: function: change or make directory
301: parameters:
302: 2 mmm e e e e e e e e e e e e e e e e e —— -
303; call chgloci(xchg,xc,vn,r,angle)
304:
305: last modified --
306: 6/4/90 (map)
307:
308: purpose ==
309: calculate distance to charge and angle of blast wave impact
310:
311: method ~--

312: see comments in code
313: subroutine child (prog, commd, icls)

14: 2 sseome—— o o
31S: call chk2way (to_acreen, row, lun, fatal error, -
316: error occurred, total fatal, total “warnings)
317: function: “perform validity of 2-way reinforced masonry element’
318: that were previocusly done in bdama subroutine mar2wi.
319: the following items are checked:

320: 1. endpoints are diagonal.

321: 2. aspect ratio is within reason.

322 parameters:

323: to acreen : logical variable indicating where

324: - error messages go

325: t - messages will go to screen

326: f - message go to file

327: row : row number in compg of 2-w reinforced
328: masonry element tc be checked

329; iun : logical unit number of file messages
330: are written to if to_screen if false
331: fatal error : logical variable indicating if fatal
332: - error occurred. this variable is

333: initialized once at the beginning of
334: the validation process to false

335: and set to true each time a fatal

336: error ©Ccurs

337: f - no error occurred

338: t - fatal error occurred

339: total fatal : total number of fatal errors

340: total warnings : total number of warnings

341:

3421 0 e e e e e e e T e e e S S S S S
343: call chkcomp (wall name, row, mat name, comp_type_name, -

344: comp_prop_name, component id, to_screen, -

345: lun, fatal_error, total_fatal, -

346: total_warnings, ier)

347; function: checks if the specified component type, comp type_ name,
348: is valid for the given material name, mat_name. the
349: component property name is then check to make sure it
350: is valid for the specified component type. this ;
351: routine is used by the preprocessor, bdamprep, and (r
352 the validation program, validfil. if used by the

353: preprocessor error message go to the screen. if used
354: by the validation program, error messages go to the
355: file specified by lun. the following checks are made:
356: 1. component type defined

357: 2. component property name defined

358: 3. material-component type mismatch

359: 4, l-way slabs and panels, beams and joists and

360: exterior columns are checked to insure the component
361: is linear. this is a fatal condition in wvalidfil.
362: 5. metal stud walls and masonry l-way components arxe
363: checked to see if the component is contained on
364: a wall area. a warning is issued if it is not.
365: 6. metal steel joists are checked for the component
366: being on a roof. a warning is issued if it is not.
367: 7. exterior columns and wood walls are checked to
368: ascertain if they are on a wall. a fatal error
369: in validfil occcurs if this is not the case.

370: 8. wood roofs are check to make sure the component
371: is on a roof area. this is a fatal condition for
372 validfil.

373: 9. two-way components are checked for diagonal

374: endpoints and reasonable aspect ratio. failure
375;: ' of one of these 2 criteria results in a fatal

376: condition.

377: 10. two-way masonry components are tested for being
378: on a roof. if this component is on a roof a

379: warning is issued.

380: 11. interior columns are checked make sure end 2

381: coordinates are blank. the coordinates are

382: blanked by the program if they contain values.
383: 12. interior columns are checked to insure that end 1

384: is contained on a roof area. a fatal error results

385; if end 1 is on a wall.

386: 13, frame components are tested to makes sure the
387: blastward area is a wall. a roof area results
388: in a fatal error.

389: 14. component type-component property mismatch

390: . 15. component in component gecmetry found in

391: component properties

392: parameters:

393: wall name : name of current wall

394: row : current row in compg that is being
395: procesased

396: mat_name : name of material type

397: comp_type_name : name of component type

398: comp_prop_name : component property name

399: component_id : 9 character id number for component
400: defined by the specified mat name,
401: comp_type name, and comp_prop_name
402: to_screen : logical wvariable indicating where
403: error meusages go

404: t - messages will go to screen
405; f - message go to file

406: lun : logical unit number of file messages
407: are written to if to screen if false
408: fatal error : logical variable indicating if fatal
409: - error occurred. this variable is
410: initialized once at the beginning of
411: the valication process to false
412: and set to true each time a fatal
413: @rror QCCUrs

414: £ - no error occurred

415: t - fatal error occurred

416: total fatal : total number of fatal errors

417: total warnings : total number of warnings

418: sjer : error flag

419: 0 - no error occurred

420: 1 - material not found

421: 2 - material-component type mismatch
422: 3 - component property name not
423: defined

424: 4 - component type-compenent

425: property mismatch

426: 5 - no component properties defined
427 for component type

428; 6 - component type not defined
429: 7 - error occurred in itype check
430:

431; —_—— o B B T e e
432; call chkmastr {(wall name)}

433; function: checks If any previous master component have been
434: changed to unique. if this type of change occurred
435: the user is warned and given the chance to make

436: the component a master again and thus not lose the
437: generated components associated with it.

438: parameters:

439: . wall name : name of current wall

440: = —mmmmememcm—e—eee——=- o e e e i e e e
441: call compd(ndepa,idepa,xb,xchyg,w,nr,dam,iwzit)

442:

443: last modified -~

444: 11/08/91 (tkb)

445: 11/24/92 (dds) - increase dimesion of dam columns from 6 to 8 and
446: put pbar and ibar in those columns

447: 12/01/92 {dds) - commented ocut write to screen

448; 01/28/93 {dds) - removed cp2, c¢i2 from web steel joist read of direct

- —————

475:
476:
477:
478:
475;
480:
481:
482:
483;
484:
485:
486:
487:
488:
489;
490:
491:
492:
493:
494:
495:
496:
497:
498:
499;
500:
501:
502:
503:
504:
505:
506
507:
508:
509:
510:
511:
512:

acceas file; removed idc from frames, added debuggin_
prints

purpose ~-
determines percent damage to building components

method —--=
uses p-i curves in section 5.0 of blast vulnerability guide

input --
arguments:
ndepa number of dependency pairs in array idepa
idepa array with pairs of independent/dependent elements
xb two dimensional array with building orientation
coordinates
xchg coordinates with charge location
ocutput --
arguments:
dam array with component damage levels and
repair/replace factors
restrictions

none set in compd

e e o 7 . it S Y e A e e o A e T L)t S L L L

call compdef (wall name, wall index) .
function: allows user input of the components which will define
the specified wall/roof area. user selects from a list
the following for each component: g

1. component material type - concrete, steel, (
masonry or wood (selection field)

2. component type — i.e. concrete slab, concrete
beam, etc. (selection field)

3. component property name - user defined component
which was defined in the component properties
definition phase. (selection field)

4. component id name - based on wall index,
number of component property name and number
generated. the generated is 00 is master and
a sequential number if generated.

{display only field)

5. x1 end or opposite corner points of the component
{user entry)

6. yl end or opposite corner points of the component
{(user entry)

7. ¥yl e=nd or opposite corner peints of the component
{user entry)

8. yl end or opposite corner points of the component
{user entry)

9. master component selection
yes - component is a master and repeated groups

will be generated from it
no - component is unique - no components will
be generated from it
{selection field)
10. center to center spacing (user entry)
11. local direction

x - component generation will be in the
positive x direction
Yy - component generation will be in the (

positive x direction
(selection field)
12. number of additional repeated groups generated

513: from the master (user entry)}

514: 13. though not displayed on spreadsheet, this column
515: temporarily ccntains the generate flag so it
516: it not lost thru deletion from table when

517: component retrieved. (program use)

518: : 14-17 used by program for maintaining independent
519: component id with the corresponding dependent id.
520: 1. check if any master components where changed to
521: unique components while on spreadsheet. user
522: is prompted to restored component to master

523: status or the leave as a unique component and
524: have any generated components deleted.

525 2. component type defined

526 3. component property name defined

527 4. material-component type mismatch

528 5, 1-way slabs and panels, beams and joists and

529: exterior columns are checked tc insure the component
530: is linear. this is a fatal condition in wvalidfil.
531; 6. metal stud walls and masonry l-way components are
532: checked to see if the component is contained on
533: a wall area. a warning is issued if it is not.
534: 7. metal steel joists are checked for the component
535: being on a roof. a warning is issued if it is not.
536: B. exterior columns and wood walls are checked to
537: ascertain if they are on a wall. a fatal error
538: in validfil occcurs if this is not the case.

539: 9. wood roofs are check to make sure the component
540: is on a roof area, this is a fatal condition for
541: validfil.

542; 10. two-way components are checked for diagonal

543: endpoints and reascnable aspect ratio. failure
544: of one of these 2 criteria results in a fatal
545; conditicn.

546: 11. two-way masonry components are tested for being
547: on a roocf. if this component is on a roof a

548: warning is issued.

549: 12. interior columns are checked make sure end 2

550: coordinates are blank. the ccordinates are

551: blanked by the program if they contain values,
552: 13. interior columns are checked to insure that end 1
553: is contained on a roof area. a fatal error results
554: if end 1 is on a wall,

555: 14. frame components are tested to makes sure the
556: blastward area is a wall. a roof area results
557: in a fatal error.

558: 15. component type-component property mismatch

559: 16. component in component geometry found in

560: component properties

561: 17. component coordinates are checked to make sure
562: that cocrdinates are not outside wall coordinates
563: parameters:

564: wall name - name of wall/roof area user selected
565: for component definition

566: . wall index ~ index into the wall area used to

567: access wall number for current wall name

BEB: = e e e e e e e e e e e e e e e
569: call compek (wall name, row, Comp_type name, component_id, -

570: lun, fatal_error, total_ fatal, -

571: total warnings, error_occurred)

572: function: “checks if the specified cocmponent has all numeric

573: values defined and if it is a master that its slaves
574: have been generated and at least cne slave exists.
575: parameters:

576: wall name : name of current wall

577: row : current row in compg that is being

578: processed

579: comp_type_name : name of component type

580: component_id : 9 character id number for component
581: defined by the specified mat_name,

582: - comp_type_name, and comp_prop_name

583; lun : logical unit number of file messages
584: are written to if

585: fatal error : logical variable indicating if fatal
586: error occurred. this variable is

587: initialized once at the beginning of
588: the validation process to false

589: and set to true each time a fatal

590: error occurs

591: f - no error occurred

592: t - fatal error occurred

593: total_fatal : total number of fatal errors

594: total warnings : total number of warnings

595: error_occurred : logical variable indicating if a

596: error occurred in the checking

597: done by this subroutine

BOB:1 mmm e e e e e e e e e e e e e e T TS m TS s
$89: call compprop ()

600: function: allows user selection of component type and then

601: allows the definition of the required properties for
602: that type. the four types are concrete, steel,

603: masonry and wood. the spreadsheet number corresponds to
604: the icnindex of the component type.

6051 e e e e e e e e S TS S TSI
606: call compr(dam)

607: (
608: last modified --

609: 7/15/91 (3pp)

€10: 2/5/93 {cjo} add prestressed beams

61l:

6l2: purpose -—-

613: determines reusablilty of building components

614:

615: method =-=~

616: in blast vulnerability guide, section 5.0, 5.1,6.0

617:

618: input --

619: ?

620:

621: output --

622: ?

623:

624: restrictions --

625: none set in compr

E26: = et e e e e e e e e e TS E eSS T T
627: call convdprt (comp_table, irow, itype, imat, icomp, rval)

628: function: convert all real values in the specified row in

629: comp_table from character to real and places them

630: in rval.

631: parameters:

632: comp_table : character array containing the component
633: properties for a specified component type.
634: irow : row in comp_table containing values to
635: be converted

636: itype : type of component property being printed
637: (1-24) (
638: imat : material type

639: icomp : component type
€40: rval : output real array containing converted

641: real values

642: function: prints error messages for the cell default

643: calculations in spreadop. this routine could

644: be expanded to provide more specific error messages
645: but for now only two generic message will be printed
646: ‘parameters: none

€471 2= e ————— e e ——
648: call cprphead (lun, itype, report, line_kt)

649: functien: writes column headers for the preprocessor component
€50: property reports based on itype and report and

651: increments the line counter, line kt, based on number
652: of lines written.

653: itype property # reports

654: 1 rcbhmi 2

655: 2 relwi 2

656: 3 rc2wi 2

657: 4 rceci 2

658: 5 rcici 2

659: 6 remrfi 2

660: 7 rcpsi 2

661: 8 stbmi 2

662: 9 stmawi 1

663: 10 stowji 1

664: 11 stedi 2

665: 12 steci 2

666: 13 stici 2

€67: 14 strrfi 2

668: 15 maulwi 2

669: 16 mauzwi 1

670: 17 marlwi 2

671: i8 marZwi 2

672; 19 mapili 2

673: 20 wdwli 2

674: 21 wdrfi 2

675: 22 wdbmi 2

676: 23 wdeci 2

677: 24 wdici 2

€78: parameters:

€79: lun : logical unit connected to report f£ile

680: itype : type of header to be printed

681: report : indicates which report to print for the
682: specified itype (1 or 2)

683: line_kt : current number of lines written to report file
684: = mm o e e e e e e e e e e e ———————
685: call cprpprnt (all)

686: function;: allows user to select and print reports based on

687: selection of material type and component type or print
688: all component reports.

689: parameters: all : logical variable indicating if all reports are
690: to be printed

€691: t - print all reports

692: £f ~ show menu for user selection

£93: 2 memmeemme e me e e e e e e e e e e e e e e e e e — - ———————
694: call cprprep (itype, imat, icomp, xeport, tot_rep, comp_name)
695: function: writes component property report for specified itype
696: and report number.

697: itype property # reports

698: 1 rchmi 2

699: 2 relwi 2

700: 3 rc2wi 2

701: 4 rceci 2

702: 5 recici 2

703:) remrfi 2

704 7 rcpsi 2

705: 8 stbmi 2

706: 9 stmswi 1

707 10 stowiji 1

708: 11 stcdi 2

709: 12 steci 2

710: : 13 stici 2

711: 14 stmrfi 2

712: 15 maulwi 2

713: 16 mau2wi 1

714: 17 marlwi 2

715: 18 mar2wi 2

716: 19 mapili 2

717: 20 wdwli 2

718: 21 wdrfi 2

7198: 22 wdbmi 2

720: 23 wdeci 2

721: 24 wdici 2

722: parameters:

723: itype : type of header to be printed

724: imat : material type

725: icomp : component type

726: report : number of report to be printed (1 or 2)
727: tot_rep : total reports that will be printed for
728: the current component type

729: comp name : component property name of current report
730: = me—mmmmmmmmmmm e e m oo s —o o ST SmoSSnSm o m TS T
731: call csort2d (array, nval, isortcol, numrow, numcol, idir, -

732: iconvert, ier)

733: business systems integration

734: (512)680-3540

735: copyright (c) 1988, 1989, 1990, 1991, 1992 (
736: all rights reserved

737:

738: function: sort a character 2 dimensional array

739: parameters: array character array to sort

740: nval number of values to sort

741: isortcol column in array sort is based on

742: numrow number of rows to sort

743: numcol number of columns in array

744: idir sort direction {1 ascending, ~1 descending)
745: iconvert flag indicating whether to convert to real
746: for the column specified in deing the sort
747: 0: sort the column as character

748: 1: convert the number to real and sort as
749: if column is real

750: ier 0 : no errors coccurred during sort

751: 1 : isortcol exceeded number of columns in
752: array

753+ mmmmmmm e e S SS S S TS oSS So oSS S TS m T
754: . call damagec {damaged)

755: function: provides a menu for user selection of viewing the most
756: damaged components or all components.

757: parameters:

758: . damaged : logical variable which indicates if
759: building sustained any damage

760: £ : building sustained damage

761: £ : building sustained no significant
762: damage {(i.e. no component’s damage
763: exceeded 0%) ,
D647 mmememmmmm e e e e S SSmeS S S oSS S ST T
765: call delgen (mindex, id, previous) (
766: function: deletes all generated components associated with

767: the specified master id

768: parameters:

———

it

794:

796:
797:
798:
799;
800:
801:
802;
803:
804:
B805:
806:

808:
809:;
810:
B811:
812:
813:
814:
815:
8l6:
817:
818:
819:
820:
B21:
822:
823:
824:
825:
826:
827:
828:
829:
830:
831:
B832:

mindex : index to where generated components begin
for the specified master
id : id number of master component which will

used to find generated components to delete
previous : pointer to previcus row processed
call dellink ({link, free, head, tail, current, previous)
function: deletes the specified component indicated by current
from the linked list and adds it back to the free list.

parameters:

link - link list used for maintaining order in
a given storage area

free - pointer to first free row in storage area
head - pointer to first used row in storage area
tail - pointer to last used row in storage area
current - pointer to current row being processed
previous - pointer to previous row processed

" " 2 S S T A A r ——— T o 7T S T i Sy o e e s e o S i s S s sk o AL A e e e e P e O -

call delwall (wall_pame)

function: deletes all master and unique components assoicated
with the specified wall, wall name, from the compg
storage area.

parameters:
wall name — name of current wall/roof area

——————————— A T T 7ot S T i L S S S W S T T B B e B e

call depin(ndep,idep,nr}

last modified ——
6/11/91 (3ipp)

purpose --
input, check validity of dependency list.

method —-
2-dimensional array idep contains a list of
independent element id, dependent element id.
the element id’s are coded to contain material id and component id
where
element id = (10000*imat) + (1000*icomp) + id

input --
argument s:
ndep total number of dependencies
idep array with pairs of independent and dependent components
nr three dimensional array with record numbers in
tapel5 where component data is stored. see
description in bdam.
output --

input arguments (ndep, idep) and:

restrictions
none set in depin

—— 2y A4 R S e S o e e i L S S S i M o B e D PR S S S . A S A S WAL T S U SO S S e s

call depmod (ndep, idep, ndepa, idepa)

last modified —--
11/08/91 (tkb)

purpose -—-
modify dependency array to include multiple stepped dependencies.
for example, if the following pairs are entered:
i,2
2,3

8§33: then the pair 1,3 should be added.

834:

835: method --

836: see comments in code

837:

838: " input --

839: arguments:

B40: ndep total number of dependencies entered

841: idep array with pairs of independent and dependent components
842: entered by user

843:

844: output --

845: arguments:

846: ndepa total number of dependencies after modification

B47: idepa array with all pairs of independent and dependent component
B48:

849: restrictions

850: none set in depmod

B51: | e e e e e e e e e e e e e S S ST e
852: call dpndprnt (wall name)

853: function: prints report on dependencies for the specified

854: wall. one report is generated. the report contains the
855:; the following information.

B856:

857: non-frame dependency report 1

B58: component type

859: x1 local end or oprosite corner point

860: yl local end or opposite corner point

86l1: x2 local end ox opposite corner point

862: y2 local end or opposite corner point (F
863: dependent component id #

864: independent component id # (1-4)

BES: e e e e e e e e e e ST S T
866: call editform (form file_ name, form number, usrdat, -

867: key_pressed)

868: routine : editform

8695: function : displays the specified form, form file name, to the

870: screen and allows user processing of that form

871: parameters : form file_name - name of form, with full path, to be

872: edited

873:

874: form_number - number of form to be edited

875: usrdat - array containing form data

876: key preased - the key stroke the user left the

877: form with

BTB: e e e e e e S S ST
879: call editfrm2 (form file name, form_number, usrdat, -

880: key pressed)

881: routine : edtfrm2

882: function : displays the specified form, form file_ name, to the

883: screen and allows user processing cof that form for

884: the bdam postprocessor

885: parameters : form file name - name of form, with full path, to be

886: : edited

887;:

888: form number - number of form to be edited

889: usrdat - array containing form data

8%0: key_ pressed - the key stroke the user left the

891: form with .

B92: mmemmm s e e e e e e e e e e e e e e e TS ST
893: call filexist (input_file name, ier) (
894: routine ; filexist

895: function : allows user to select the bdamprep file name to save

896: the file under. the default is the current file name,

897 issues warning message if the selected file already
898: exists. wuser then has the choice of writing over the
£899: existing file or aborting the save,

900: parameters

901: input file name i current preprocessor file name
902: ; selected by user. contains full
903: path

904: ier : 0 - save file

S05: : 1 -~ do not save file

906: @ s e e e e e e e e e e e e e e e ———————
907: call fillblst (wall name, number damaged)

908: function: fills the damage_table with required data for displaying
909: all components for a specified wall area.

910: data is stored in damage_table as follows:

911; non-frame components:

912: col. 1 - compaonent type in abbreviated form

913: cel. 2 - peak blast pressure to component

814: cecl. 3 - peak blast impulse to component

915: cel. 4 - lecal x1 coordinate of component

916: col. 5 - local x2 coerdinate of component

917: col, 6 - local yl coordinate of component

918: col. 7 - local y2 coordinate of component

919; cel, 8 - distance of component from local (0,0);

920: used for sorting the damage table (program
921: use only)

922; frame components:

923: col. 1 - component type in abbreviated form

924: col. 2 - peak blast pressure to component

925: col. 3 - peak blast impulse to component

926: col. 4 - blastward wall name S

927: col. 5 - local xl1 coordinate of component

928: cel. 6 - local x2 coordinate of component

929; col. 7 - distance of component from local (0,0);

930: used for sorting the damage table (future
931: program use if decided to perform a secondary
932: sort)

933: parameters:

934: wall name : current wall/roof area name

935: number damaged : total number of most damaged components
936: for specified wall

937: s e e e e e e e e e e ———
938: call filledam (wall name, number damaged)

939: function: fills the damage table with required data for displaying
940: components for a specified wall area.

941: data is stored in damage table as follows:

942; non-frame components: -

943; col. 1 - component type in abbreviated form

944; col. 2 - local x1 coordinate of component

945: cel. 3 - local x2 coordinate of component

946: col. 4 -~ local yl coordinate of component

947: col. 5 =~ local y2 coordinate of component

948: col. 6 - percent damage to component

949: col. 7 - repair or replace flag to component

950: col. 8 - p-i diagram terms pbar

951: : col. 9 - p-i diagram terms ibar

952: col.lQ - distance of component from local (0,0);

953: used for sorting the damage table {(program
954: use only)

955: frame components:

956: col, 1 - component type in abbreviated form

957: col. 2 - percent damage toc component

958: col. 3 - repair or replace flag to component

959: cel. 4 - p-i diagram terms pbar

960: col. 5 - p-i diagram terms ibar

| Saved: 4-28-93 2:37p APPENDIX.DB ~16 | (
K e e . o o e o 8 e e *
961: col. 6 - blastward wall name

962: col. 7 - local xl coordinate of component

963: col. 8 - local x2 coordinate of component

964: col. 9 - distance of component from local (0,0});

965 used for sorting the damage table (future

966: . program use if decided to perform a secondary
967: sort)

968: parameters:

969; wall name : user assigned name of wall/roof area,
970: unless the area is a frame in which
971: case the program assigned the area name
972; of frame

973: number_damaged : total number of most damaged components
974: for specified wall

N L T e et
976: call £illdp {(mindex, dindex, blankit)

977: function: copies the data required for the dependency spreadsheet
978: depend_table from compg. note: if storage of compg

979: or depend table changes, indexes on the do loops will
980: have to change.

981: parameters:

982: mindex ~ row index of compg table to be filled
983: dindex - row index of depend table to be filled
984: blankit - logical variabe indicating if old

985: dependencies are to be copied or blanked
986: £ : blank old dependencies in compg and
987: depend table ;

988: f : copy old dependencies from compg to
989: depend table

990: :
G011 e e e e e e e ST ST T (
992 call fillgeo (wall name, num_print, ier)

993: function: retrieve a master/unique data and generated components
994: for the specified wall name from compg and places in
995: the work_table for printing. for non~frame items

996: the distance from the local 0,0 to the endpoints is

997: placed in column 14 of work_table for each row. for
998: frames the is placed in column 8. these distances

999: will be used for sorting.
1000: parameters:
1001: wall name - user assigned wall name which is
1002: to be displayed with dependencies
1003: num_print - number of components put in work_table
1004: to be printed
1005: ier - : no errors occurred
1006: 1 : no componets found for wall
1007: 2 : number of components exceeded
1008: NUMIOW
10091 = mmem e e e e e e e e e TS SS T mSSEE ST
1010: call fillmdam (number_most_damaged, frames)
1011: function: fills the damage table with required data for displaying
1012: most damaged components.
1013: non-frame components:
1014: . col. 1 - wall name component is on
1015: col. 2 - component type in abbreviated form
101s6: col. 3 - percent damage to component
1017: col. 4 - local xl1 coordinate of component

1018: col. 5 - local x2 coordinate of component

1019: col. 6 - local yl coordinate of component
1020: col. 7 - local y2 coordinate of component

1021: col. B - p~i diagram terms pbar (
1022: col. 9 - p-i diagram terms ibar
1023: frame components:

1024: col. 1 - blastward wall name {has * in lst column

| Saved: 4-28-93 2:37p APPENDIX.B -17 i
T i i S W A iy S T S o S S O T " . 2. *
102% to distinguish from non-frame components

1026: col. 2 ~ component type in abbreviated form

1027: col. 3 - percent damage to component

1028: col. 4 - local xl1 coordinate of component

1029: col. 5 - local x2 coordinate of component

1030: cel. 6 - p-i diagram terms pbar

1031 col. 7 - p-i diagram terms ibar

1032 parameters:

1033: number most components : total number of most damages
1034 components

1035 frames : logical wvariable

1036 t - frame components were among
1037: most damaged

1038: f - no components were among
1039: most damaged

1040: = e e e e e e e e e e e e e e e
1041: call fndcomp (mat_name, comp type name, comp_ prop_name, ier)

1042: function: provides pop-up menu of list of defined component

1043: property names based on the current material type

1044: and compconent type. the selected name is returned in
1045: comp_prop_name along with an error flag,

1046: parameters:

1047: mat name : name of material type

1048: comp_type name : name of component type

1049: comp prop_name : selected component property name

1050 ier : 0 - no error occurred

1051 1 - material name or component name
1052: is not defined

1053: 2 - material name not found in material
1054: list - programmer error

1055: 3 - component name not found in

1056: component list - programmer erroxy
1057: 4 - no component properties defined
1058: for specified material and component
1059: type

1060: 5 = user aborted selection of component
1061: property name

1062:

10631 e e e e e e e e e e e e e e e e e e o e i e e
1064 call £ndgen (m_id, mindex, found)

1065: function: searches the generated link list for where data for
1066: specified master component begins,

1067:

1068; parameters:

1069: part_id

1070: mindex

1071 found

1072: = e e e e e e e e e e e e e e e e
1073 call £ndwcomp (wall_name, mlink, head, mindex, previous, -

1074 itype, found, id)

1075: function: searches the specified link list for where data for
1076: specified wall name begins, if type = 1, the master/
1077: unique list is searched until the specified wall name
1078 if found. the pointer, mindex then returns the row
1079: number of the found record; found is set to true and
10806: previous returns the row number in the list before

1081: the found record. if type = 2, the generated

1082: list is also searched for the specified wall_name. once
1083: the wall is found the search switches to searching

1084: for the id of the master the components where generated
1085 from. found is set to true, if data for

1086 specified wall is found. found is falge if not found.
1087: mindex returns the row number of the first wall name
1088: component in the list. previocus returns the row

| Saved: 4-28-93 2:37p APPENDIX.B -18 [(
B o e e v o T e 0 i . B e B T T £ SRS e o e S e — L.
1089: number in the list before the record was found.

1090

1091: parameters:

1092: wall name : name of current wall

1093: head : pointer to head of linked list

1094: mindex : pointer to where data for the specified
1085: wall begins

1096: previocus : pointer to previous row processed

1097: itype : indicates if storing master/unique,

1098: generated or frame components

1099: 1 - master/unique component

1100: 2 - generated component

1101: 3 - frame

1102: found : logical variable that indicates

1103;: finding of desired data

1104: t - components found for specified

1105: wall

1106: f - no components found for specified
1107: wall

1108: : id : if itype = generated, id contains

1109: the number of the master id the

1110: components were generated from

11113 e e e e e e e e e e e T TS S ST ES ST
1112: call framdef ()

1113: function: allows user input of the frame components. user selects
1114: the following items indicate the columns used in the

1115: work area, frame table: .

1116: 1. frame type - reinforced concrete frame or

1117: steel frame

1118: 2. component property name - user defined component
1119: which was defined in the component properties (
1120: definition phase. {selection field)

1121: 3. frame id - same format as component id but to

1122: indicate this is a frame the first portion is
1123: 00. the second number is based on a sequential
1124: number assigned for the frames and last pertion
1125: is 00. (display only field)

1126: 4. wall containing frame which is nearest the blast.
1127: (selection field)

1128: 5 x1 coordinate of ground level endpoint of column
1129: (user entry)

1130: 6. yl coordinate of ground level endpoint of column
1131: {(user entry)

1132: 7. total height of frame (user entry)

1133: 8. material type - concrete or steel, dependent on
1134: component type selected (program use)

1135: parameters:

1136: e e e e e e e e e e S S SS T T ST T T T
1137: call framekil {rownum, depcomp, numdcomp)

1138: function: finds all components within the area of influence

1139: of a frame and sends the array depcomp with the id numbers
1140: of all these components back to the calling

1141: program

1142: parmeters:

1143: rownum - the row number of frame component

1144:; compg matrix

1145: depcomp - an array with id numbers for all

1146: components which are failed due

1147: to failure of frame in rownum

1148: numdcomp - number of component id numbers in

1149: depcomp L
11508 = s e e e e e e e e e e e e e e e S S S S S S S s .
1151: call gen (wall_index, set_gen flag, w_comp_tmp, ier)

1152: function: generates the requested components from the master

| Saved: 4-28-93 2:37p APPENDIX.B -19 |
I o kA S " T o 7 e i e ek e ek T s T ke g »*
1153: component .

1154: parameters:

1155: wall index ~ index into the wall area used to

1156: access wall number for current wall name

1157: gset_gen_flag - .true. : indicates that generated

1158: - compeonents were created from the specified master
1159; and that the gen flag parameter in associated with
1160;: the compg storage area should be updated to reflect
1161: that components were generated from that master.
1162: w_comp_tmp - temporary storage for the row containing
1163: the master component that components are to be

1164: generated from. this is done since the work space,
1165: work_table, is actually the same for master/unique
1166: compenents and for the generated components,

1167: ier - 0 : no error occurred

1168: 1 : one or more required pieces of data
1169: in missing from the current master
1070 e e e e e e e e e e = —————
1171: call gendpnd (wall name, wall index, total_depend)

1172: function: finds Independent component id numbers for each component
1173: this is a ’first-cut’ method in that it is based on a
1174: number of assumptions discussed in user’s manual

1175: parmeters:

1176: wall name - name of wall/roof area user selected
1177: for component definition

1178: wall index - index into the wall area used to

1179: access wall number for current wall _name

1180: total depend - total number of components in current
1181: wall

1182: | e ———————
1183: call genframd ()

1184: function: generated dependencies for frame. finds all frames
1185: which have a damage of 100% and then find all components
1186: within the volume of the frame and sets them to

1187: total failure (100%) also. recalculate building damage,
1188: building repair/replace factor and % reusable floor.
1189: parameters:

1180: 2 e e e e e e e e e e e e e e e e e ———————
1191: call genit (wall name, wall_ index, ld, num _gen, w_comp_tmp,-

1192: term_key, ier) - -

1193: function: allows user to view/ edit generated components from
1194; the master component . user selects/enters from a
1195: list the following for each compcnent:

1196: 1. component material type - concrete, steel,

1197: masonry or wood (selection field)

1198: 2. component type - i.e. concrete slab, concrete
1199: beam, etc. (selection field)

1200: 3. component property name - user defined component
1201: which was defined in the component properties
1202: definition phase. (selection field)

1203: 4. component id name - based on wall index,

1204: number of component property name and number
1205: generated. the generated ia 00 is master and
1206: a sequential number if generated.

1207: ' (display only field)

1208; 5. =x1 end or opposite corner points of the component
1208: {(user entry)

1210: 6. yl end or copposite corner poeints of the component
1211: (user entry)

1212: 7. ¥l end or opposite corner points of the compohent
1213 {user entry)

1214: 8. yl end or opposite corner points of the component
1215: {(user entry)

1216: parameters:

| Saved: 4-28-93 2:37p APPENDIX.B -20 [(
I o s o 4 o i e T ——— o = e S T 5 D S S S 8 AN A A g % L S M R TP S S R Sy e i e e e e e *
1217: wall name - name of wall/roof area user selected

1218 for component definition

1219 wall index - index intc the wall area used to

1220: access wall number for current wall name

1221: id - id number of component which generated

1222 - components

1223: num_gen - number of additional repeat groups generated
1224: for current master component

1225: w_comp_tmp- temporary storage for the row containing

1226: the master component that components are

1227 to be generated from. this is done since

1228 the work space, work_ table, is actually

1229 the same for master/unique components and

1230 for the generated components.

1231: term_key = key_stroke user exited on

1232: ier -0 no error occurred

1233: b error occurred copening sprdhead.dat

1234: or reading file

12357 m e e e e e e e e e e e e e e S S — s
1236: call geomprnt (wall name)

1237 function: prints report on component geometry for the specified

1238 wall. the report contains the following information

1239: depending on if the wall/rocf area is a frame:

1240:

1241: non-frame component geometry report 1

1242: item #

1243: material type

1244: component type

1245: component preoperty name -
1246: component id # (
1247:

1248: non-frame component geometry report 2

1249: x1 local end or opposite corner point

1250: ¥l local end or opposite corner point

1251: x2 local end or opposite corner point

1252 v2 local end or opposite corner point

1253: master component generation (yes or no)

1254: center to center spacing

1255: local direction of c¢/c spacing (x or y)

1256: number of components to be generated

1257:

1258: frame component geometry report

1259: component type

1260 component property name

1261: component id #

1262: blastward wall name

1263: x1l local end coordinate

1264 vl local end coordinate

1265: height of frame

12661 = e e e e e e e e e e e e S S—S S
1267: call getdata (input_file_ name)

1268 function: retrieve data for current problem which is required

1269 for a restart of the preprocessor.

1270: parameters:

1271: input_file name : name of file to retrive data

1272: from; contains full path

12731 = e e e e e e e e e e eSS S S E S S SmmEe TS
1274: call getdpnd (wall name, numrow, blankit, total_dpnd, ier)

1275: function: retrieve a master/unique data and generated components
1276: for the specified wall name from compg and places in

1277 the depend table for spreadsheet display. &
1278: parameters: :
1279: wall name - user assigned wall name which is

1280: to be displayed with dependencies

NUMrow = maximum number of rows which can be
displayed on spreadsheet
blankit - legical variabe indicating if old

dependencies are to be copied or blanked
t : blank old dependencies in compg and
depend table
f : copy old dependencies from compg to
depend_table
total number of components for current
wall/rocof area
ier - 0 : no errors occurred
1 : no componets found for wall
2 : number of components exceeded
nuMrow

total_dpnd

e . T) " 7 o . o o e - 7 T — - - - -

call getinp (row, pcol, prompt, lprmpt, col, mtype, mlen, -
outstr, term, clegal, numter}

business systems integration

(512)680-3940

copyright (c) 1988, 1989, 1990, 1991, 1%%z

all rights reserved

e o T —— T S T T — T

call getspred (spread no, ier)
function: reads all required variables for the specified
spreadsheets from the data file sprdhead.dat.
the following values are read:
1. spread no
2. number of columns on spreadsheet
3. number of rows on spreadsheet
4. number of column header lines
5. column headers
6. help text
7. variable type for each column (i.e. character,
integer, real)
8. number of defaults
9. column numbers of coluans which have default settings
10. default value for the default columns
11. fields where duplication on spreadsheet allowed
0 - field can be duplicated
1l - field can not be duplicated
parameters:
spread no - number of spreadsheet to retrieve data for
ier - 0 : no error cccurred
1 : error occurred opening file,
sprdhead.dat
2 : error cccurred reading sprdhead.dat

e e S S A WP P P AP e G S S G U S S e ko S T S S YA T ————— —————— A v} $7 P A T S S A S

call getvars (spread no, col_position, calc_type)

function: used by spreadop for determining the columns used in
default calculations. based on the spreadsheet number,
spread no and the column position on the spreadsheet,
col_posxtlon, the required column numbers are returned
along with an indicator of the equation to be used for
calcluating.

———— " o T slak T A A R P S S S M S S T T S S e . o o i e W e e B e T T S Tt M S S B S T 77 i — ok S

call getwalls (wall name, term key, ier)

function: provides pop-up menu of list of defined wall areas
{(roofs are excluded) for user selection. the selected
name is returned along with the keystroke the user
exited the menu with.

parameters:
wall name : name of chosen wall/rcof area
term key : reflects user’s decision to continue

- processing or return to previous menu

| Saved: 4-28-93 2:37p APPENDIX.B -22 |
B o e o o S A i e s ot o L D . B A 0 0 N D D e e S B e SR *
1345: 0 - continue processing

1346 £f2 (316) - return to previous menu

1347 ier : 0 -~ no error occurred

1348: 1l - no wall areas defined

1349: 2 - or user aborted selection

1350

13811 mmm e e e e e e e e e e e e e e S s
1352: call getwname (wall name, wall_index, itype, term_key, ier)

1353: function: provides pop-up menu of list of defined wall/roof

1354: areas. the selected name is returned along with

1355: the keystroke the user exited the menu with.

1356: parameters:

1357: wall name : name of chosen wall/roof area

1358: wall index : index into wall data for wall/roof

13589: area selected

1360: itype : indicator of whether to digplay message
1361: applying to wall component definitions
1362; or dependencies

1363: 1 - component definitions

1364: 2 - dependencies

1365: 3 - blast load on building components
1366: 4 - most damaged components

1367: 5 - component geometry print

1368: 6 - dependency print

1369: term key : reflects user’s decision to continue
1370: processing or return to previous men
1371: 0 - continue processing .
1372: £2 (316) ~ return to previcus menu

1373: ier : 0 - no error occurred

1374: 1 - no wall areas defined or user

1375: aborted selection

1376:

13771 e e e e e e e e e e e e e T S S s S Ss e
1378: call gtcompgr (comp_id, irow, ier)

1379: function: uses the specified component id to determine the

1380: row number of the component property in compg storage
1381: area.

1382: parameters:

1383: comp_id : component id number used for searching
1384: the compg array

1385: irow : row number of component in compg area
1386: ier : 0 - no error occurred

1387: 1 - not found in compg table

1388:

1380: = e e e e e e e e e e e e e e e S SSS s
13%0: call gtfulnam (comp type_name, icomp, imat, ier)

1391: function: uses the specified component property name to find

1392: the icomp and imat that corresponds to the specified
1393: type.

1394: parameters:

1395: comp_type_name : name of component type

1396: icomp : component # with a given material group
1397: imat : material #

1398: ier : 0 - no error occurred

1399: 1 - component type name not found

1400: = eSS e
1401: call gtgroup (wall name, itype, id)

1402: function: retrieves the wall/rocf roof group specified by wall name
1403; of master and unique components, if itype = 1, from
1404: the compg storage array and places them in w_comp table
1405: for spreadsheet display. the generate flag is

1406: maintained aligned with the correct component by

1407: removing it from compg and place it in an unused col,
1408: column 13, of the w_comp_table., if itype = 2, generated

1463:

1467: parameters:

components are being retrieved from compg and places
in gencomp. if itype = 3, frame componets are being
retrieved from compg and placed in frame table.

compg contains all required information for each
component used in the building. the rows within compg
are never physically moved but order is maintained
thru the link list mlink. pointers to the beginning
and end of the used master/unique components are
majntained in head and tail. pointers to the
beginning and end of the used generated nodes are
maintained in ghead and gtail. pointers to the
beginning and end of the frame nodes are maintained in
fhead and gtail.

compg contains the following for itypes 1 & 2:
non~-frame components:

column 1 : wall name

column 2 : component material type (wood, concrete, etc)
column 3 : component type {(r/c beam, etc)

column 4 : component property name (user assigned)
column 5 : component id number

celumn 6 : xl1 coordinates of end or corner

column 7 : yl coordinates of end or corner

column 8 : x2 coordinates of end or corner

column 9 : y2 coordinates of end or corner

column 10: master component indicator

yYes - master

no - unique
column 11: center to center spacing
column 12: local direction

local x - generate in positive x directicn

local y - generate in positive y direction
column 13: number of additional repeated components
column 14: independent component
column 15: independent component
column 16: independent component
column 17: independent component

oW

compg contains the following for itype 3:
frame components

column 1 : wall name - always frame

column 2 : component material type (concrete or steel)

column 3 : component type (r/c frame or steel frame)

column 4 : component property name (user assigned)

colunmn 5 : component id number

column 6 : x1 coordinate of blastward exterior column,
coordinates are in the local coordinates of
the blastward wall

column 7 : yl coordinate of blastward exterior column,
coordinates are in the local cocordinates of
the blastward wall

¢olumn 8 : blank

column 9 : blank

column 10: set to ne since no components may be generated
from this component

column 11: name of blastward wall

column 12: total frame height

wall name - name of current wall/roof area
itype - indicates if storing master/unique,
generated or frame components
l : master/unigque component
2 : generated component

| Saved: 4-28-93 2:37p APPENDIX.B -24 | (
e . i e o i e B o o S < T o ot AL g Tk i T T A e R *
1473 3 : frame components

1474: id - id number of master compcnent which will

1475: used to find components generated from

1476: that master (used when itype = 2)

14777 e e e e e e ST T T
1478: ‘call gtmat {(imat, icomp)

1479; function: retrieves the component material property specified

1480: by imat and icomp from the xmp storage array and places
1481: them in comp_table for spreadsheet display. xmp

1482: contains all required information for component

1483: material property used in the building. the rows

1484: within xmp are never physically moved but order is

1485: maintained thru the link list clink.

1486

1487: xmp contains the following:

1488: column 1 : ien - identification based on material

1489: and selected subset component

1490: column 2 : component property name (user assigned)

1491: column 3 : weighting factor

1492: column 4 : beam width

1493: column 5 beam thickness

1494: column 6 : loaded width

1485: column 7 : total weight

1496: column 8 compressive concrete strength

1497: column 9 : steel yield strength

1498: column 10: depth to tensile steel

1499: column 11: area tensile steel

1500: column 12: moment of inertia

1501: column 13: boundary condition ' :
1502: parameters: (
1503: imat - material indicator

1504: 1 : concrete

1505: 2 : steel

1506: 3 : masonry

1507: 4 : wood

1508: icomp - number of subcategory which occurs under

1509: each material

16510 = e e e e e e e e e e e e S S S Smmo o EeTm
1511: call gtsortid (compg_row, sort row, ier)

1512: function: uses the specified row number in compg to search

1513: the sortcompg table to determine the index into the

1514: damage table, dam, from bdama.

1515: parameters:

1516: comp_row : row number of current component in

1517: the compg array

1518: sort_row : row number of component in sortcompg
1519: and dam

1520: ier : 0 -~ no error occurred

1521: 1 - not found in sortcompg table

1522:

1523: = e e e e e e e e e S SS S E e T
1524: call gtxmprow (mat_name, comp_type name, COmp_prop name, -

1525: irow, ierx)

1526: function: uses the specified material type, mat_name, the

1527: specified component type, comp_type_name, and the

1528: specified component property name to determine the

1529: row number of the component property in xmp storage

1530: area.

1531: parameters:

1532; mat_name : name of material type ;
1533: comp_type name : name of component type t
1534: comp_prop_name : name of component property name '
1535: irow : row number of component in xmp area

1536: ier : 0 - no error occurred

1 - 1nval;d material type

2 - specified component type not
valid for specified material

3 - specified component property not
valid for specified component type

call inslink (link, free, head, tail, current, ier}

function: removes the first available free space from the free
list and inserts it to the tail of the linked list.

parameters:

link - link list used for maintaining order in
a given storage area

free — pointer to first free row in storage area
head — peinter to first used row in storage area
tail - pointer to last used row in storage area
current - pointer to current row being processed
ier - 0 : no error occurred

1 : no more free space available
in storage area - it’s full

———— e S o o o o o . i e o e A ——— T T ——————— -~ — = - —

call interp (imat,icomp,pbar,ibar,dmg,n)

lJast modified —-

10/28/91 (tkb)

2/8/93 (cjo) asymptotes for all components added into interp
new asymptotes added for components steel components
without tension membrane and rc components with arching
wood comp. asymptotes changed to correlate to new p-i
parameters

purpose --
determination of percent damage to component to be used in level
of damage evaluation

method ==
numerically defines relevant p-i curves for material/component
type under consideration, and compares these values with calculated
pbar and ibar terms to identify the corresponding level of damage.

input --
imat
icomp
pbar
ibar

output -~
dmg

restrictions --
none set in interp
int = iroof (wall_ index)
function; to determine if wall area in row ‘wall index’
) is a "roocf’. rocf returns a 1 if the area is a roof
otherwise it returns a 0.
parameters:
wall index - index into the wall area used to
access wall number foz current wall name
call itypechk (to_screen, row, wall name, comp_ type, -
comp_id, imat, icomp, lun, fatal _error,
error_occurred, total fatal, total _warnings)
function: “checks for component specific errors based on the itype

| Saved: 4-28-93 2:37p APPENDIX.B -26 | [
U o v o S T v o S T T T e S A A U ki W W S o <A N D A S e A T TE S O W T Y e e i L A e *
1601: of the component. the following conditions are checked:
1602: 1. l-way slabs and panels, beams and joists and

1603: exterior columns are checked to insure the component
1604: is linear. a warning is issued if it is not.

1605; 2. metal stud walls and masonry l-way components are
1606 checked to see if the component is contained on
1607 a wall area. a warning is issued if it is not.
1608 3. metal steel joists are checked for the component
1609: being on a roof. a warning is issued if it is not.
1610: 4. exterior columns and wood walls are checked to

1611 ascertain if they are on a wall. a fatal error
1612: in validfil occecurs if this is not the case.

1613: S. wood roofs are check to make sure the component
1614: is on a roof area. this is a fatal condition for
1615: validfil.

1616: 6. two-way components are checked for diagonal

1617: endpoints and a minimum aspect ratio. failure
1618: of one of these 2 criteria results in a fatal

1619: condition.

1620; 7. two-way masonry components are tested for being
1621 on a roof. if this component is on a roof a

1622: warning is issued.

1623: 8. interior columns are checked make sure end 2

1624: coordinates are blank, the coordinates are

1625: blanked by the program if they contain values.
1626: 9. interior columns are checked to insure that end 1
1627: is contained on a roof area. a fatal error results
1628: if end 1 is on a wall,.

1629: 10. frame components are tested to makes sure the .
1630: blastward area is a wall. a roof area results (
1631: in a fatal error.

1632: parameters:

1633: to_screen : logical variable indicating where

1634: error messages go

1635: t - messages will go to screen

1636: f - message go to file

1637: oW : current row in compg that is being
1638: processed

1639: wall name : name of wall/roof area user selected
1640: for component definition

1641: comp_type : name of component type

1642: comp_id : 9 character id number for component
1643: defined by the specified mat_name,
1644: comp_type name, and comp_prop_name
1645: imat : number between 1 and 4 which indicates
1646: the material type of the current

1647: component

1648: icomp : number between 1 and 7 which indicates
1649 the current component number in the
1650: given material group

1651: lun : logical unit number for error output
1652: file

1653: fatal errer : logical variable indicating if fatal
1654: error occurred. this variable is

1655: initialized once at the beginning of
1656: the validation process to false and
1657;: set to true each time a fatal error
1658: occurs

1659: f - no error occurred

1660; t - fatal error occurred

1661: error_occurred : indicates error occurred in this

1662: category

1663: total fatal : total number of fatal errors which have
1664 occurred

—————— A Al o T it = = T e T v i b ekl R S Ak e sy e e ey ol S T i — ik A -

——————— s e ok ik el e AL A S T { ——————————————— — " — - - - -

call ktdpnd (total_depend)
function: checks the compg area to count the total number of
dependencies pairs that exist.

g okt e = e b e ki L 1 T T T T T " T o —— o " T o

call ktwdpnd (wall name, total depend)
functien: checks the compg area to count the total number of
independent components that exist for the current wall

call 1leftj (chosen_value, char variable, variable_length)
function: left justifies data within a variable. char_variable
contains the data to be right justified. chosen value
contains the left justified data. variable should
not be longer than 80 characters

———— T T T T IS T W = e o e s e AM ol U U L S S S T T —

call mapili (ncl,nel)
masonry pilasters

last modified --
7/01/91 (3ipp)
01/28/93 (dds) - made moment of inertia be input, xim, rather than
calculated value, im; added debugging prints

purpose --—
data is read from and/or written to a direct access file,

method --
in blast wvulnerability guide, see section 5.0, figure 5.1*
and section 6.1 *

input --
tapel5: direct access file with individual element data.

output =--
tapel5 and arguments {(see input discussion)

restrictions
none set in mapili

——————— — . T T v . Al sl v U A T T L e S - S o - o " S T > Y e T o S

call marlwi (ncl,nel)
reinforced masonry one way walls
last modified -~

7/01/91 (3jpp)
01/28/93 (dds) - made moment of inertia be input, xim, rather than

calculated value, im; removed a from read and write;

added debugging prints, weight/length in ci is
calculated using areal weight and section width

purpose --
data is read from and/or written to a direct access file.

method --
in blast vulnerability guide, see section 5.0, figure 5. 1*
and section 6.1

input --
tapel5: direct access file with individual element data.

ocutput «~-
tapel5 and arguments (see input discussion)

----.--—_—_—__—-___..._—__-_--——---..-.-——___-.--—-—a-—-—_—_-__-.._.—-.._-._--

restrictions
none set in marlwi

.._—__--.—_-.n—-n---.—--_._—_..-————_—--———-_u-——_——_-———_—-a—_—--—_—-—.—--.—__._._

call mar2wi({ncl,nel)
reinforced masonry two way walls

last modified --
7/02/91 (jpp)
01/28/93 (dds) - made moment of inertia be input, xim, rather than
calculated value, im; added debugging prints
modified gamma in ci into effective wall density

purpose --
data is read from and/or written to a direct access file.

method --
in blast vulnerability guide, see section 5.0, figure 5.1*
and section 6.1 *

input --
tapel5: direct access file with individual element data.

output --=
tapel5 and arguments (see input discussion)

restrictions
none set in marZwi

- —— - — . - [——— P L T L il

call maulwi ({(nci,nel)
unreinforced masonry one way walls
last modified —-

7/03/91 (3pp)
01/28/93 (dds) - made moment of inertia be input, xim, rather than

calculated value im; made z input rather than calculated
value; added iarch; and added debugging prints; removed

cross-sectional area, a, from input list

modified ci to get weight/length in terms of gamma

purpose --
data is read from and/or written to a direct access file.

method -—-
see theory manual

input --
tapel5: direct access file with individual element data.

output =--
tapelS5 and arguments (see input discussion)

restrictions
none set in maulwi

.——_—-__.--..p—-——...-—-p—-——_—--u——————_-n--————-_-__....____--_——-.p—-—_-————--

call mau2wi(ncl,nel)
unreinforced masonry two way walls
last modified --

7/03/91 (jpp) .
01/28/93 (dds) - added b to read, write; added debugging prints

K

,/‘.-

1793 modified ci to calculate density with gamma
1794

1795;: purpose --

1796: data is read from and/or written to a direct access file.
1797

1798: "method --

1799; in blast vulnerability guide, see section 5.0, figure 5.1*
1800 and section 6.1 *
1801

1802 input --

1803 tapel5: direct acceas file with individual element data.
1804

1805 output --

1806 tapelS and arguments (see input discussion)

1807

1808 restrictions

1809 none set in maulwi

18101 e e e e e e e e e e e e e e e
1811 call mdamrep ()

1812; function: prints report on the most damaged components. the
1813 report contains the information as follows:

1814: most damaged building components repoxt -

1815 wall/roof name

1816 component type

1817 percent damage

1818 component local coordinates

1819 p-i diagram terms, pbar

1820: p-i diagram terms, ibar

1821 parameters: none

1822; 2 mmmm e e e e e e e e e e e e
1823: call onorm(xec,xl,x2,xb,vn)

1824:

1825: last modified --

1826 6/4/90 {(map)

1827

1828; purpose -=-

1829: calculate outward normal vector from center of component
1830:

1831 method --

1832 see comments in code

1833;

1834; input --

1835; arguments:

1836: xc coordinates of center of component

1837: x1,x2 coordinates of two nodes on element which are not
1838: colinear with xc

1839: xb coordinates of building orientation node

1840:

1841: cutput --

1842: arguments:

1843: vn components of unit outward normal vector

1844:

1845: restrictions

1846: none set in onerm

1847: e e e e e e e
1848: call optchk (opticn_table, key pressed, match, old_key)

1849: function: check if keypressed was option key or if mouse was
1850: clicked within the range of the option field
1851:

1852: parameters: inp option table - table defining option area
1853: where mouse can be clicked and what key
1854; that click translates to.

1855: 1 form number

1856: 2 row number of option

3 column number of option
4 width of option field

1859: 5 key which that area represents
6 1: regular option

1861: 2: external option field

1863: inp key pressed - key_pressed by user

1864: out key pressed - if was mouse click and within
1865: option field, key pressed set to key

1866: represented by the click

1867: out match

1868: true : click or key pressed within option
1869: range

1870: false: click or key pressed not with
1871: option range

1874: call optionb {(usrdat, key pressed, form number, ipos)

1875: function: provides the options for forms in bdampost. however,
1876: since no external options are used by the current
1877; forms in bdampost, this is a dummy routine and only a
1878: skeleton structure set up in case it might later be
1879: needed.

1880: parameters:

1881: usrdat array containing form data

1882: key pressed : keystroke user left form with and
1883: is used as an input parameter into
1884: this routine to determine action to
1885: take

1886: form number : number of form being edited (
1887: ipos : current row number in form (usrdat)
1888: when entered this routine

189%0: call optionb2 (usrdat, key pressed, form number, ipos)

1891: function: dummy program for editfrm2 since facedap forms have no
1892: external options

1894: call outl (name,w,xchg,ninc,dxchg, xb, nbop, ndep, idep, nr)

1896: last modified --
1897: 7/10/91 (map, jppP)

1899: purpose --
1900: writes input data to output file

1902: method --

1905; input --

1908: output --

1911: restrictions --
1912: nene set in outl

1914: call out2({w,xchg,dam,bd,br,bu,icount)

1916: last modified --
1917: 7/10/91 {map, jpp) (

1919: purpose --
1920: writes result to output file

| Saved: 4-28-93 2:37p APPENDIX.B -31 I
W o L e = i o o ke o A L L A o " 2 o o T T . S - . 1 v i ”*
1921:

1922: method --

1923:

1924;

1925: input --

1926:

1927:

1928: cutput --

1529:

1530

1931: restrictions ~-

1932: none set in out2

1933: e e
1934: call outpll (name,w,ninc)

1935:

1936: last modified --

1937: 7/30/91 (irp)

1938:

1939: purpose --

1940: writes title, charge weight, and number of iterations to

1941: ocutput plot file

1942: | e e e ——————————————————
1943: call outpl2(xb,xchg,bd,br,bu)

1944:

1945: last modified --

1946: 7/30/91 {map, jpp)

1947:

1948: purpose --

1948: writes data to output plot file

19501 e e e e
1951: dimension xb(3,5), xchg{3)

1952: sumr?2 = (.0

1953: do 100 i=1,3

1954: sumr2 = sumr2 + (xchg(i) - xb(i,1))**2

1955: 100 continue

1956: r = sgrt (sumr2)

1957: write(3,*) r,bd,br,bu

1958: return

1959: end

1960: = —ommmmmmm e e e
1961: call outpost (dam, bd, br, bu)

1962

1963: last modified -~

1964:; 11/19/92 (dds) ~ created from ocut2

1965:

1966: purpose --

1967: writes result to ocutput file for bdam postprocessor, bdampost
1968:

1969: method --

1970:

1971:

1972: input --

1973:

1974;

1975: output --

1976:

1977;:

1978: restrictions --

1979: none set in outpoat

1980: T e e e e e e e e e e 0 00 0 o A o o A A R 320 3 2 A e e e e e
1981: call pausl (msg)

1982; business systems integration

1983; (512) 680~-3940

1984: copyright (c) 1988, 1989, 1990, 1991, 1992

2048:

call postprnt (damaged)

function: provides a menu for user selection of postprocess
reports.

parameters:
damaged : logical variable which indicates if

building sustained any damage
t : building sustained damage
£ : building sustained no significant
damage (i.e. no component’s damage
exceeded 0%)
call prephead (itype, report, line kt)
function: writes column headers for the preprocessor reports
based on itype and increments the line counter,
line_kt, based on number of lines written.

itype type # report
1 wall definitions 2
2 component geometry 2
3 frame geometry 1
4 dependency 1

parameters:
itype : type of header to be printed
report : indicates which report to print for the
specified itype (1 or 2)
line _kt : current number of lines written to report file
call prepprnt (stat_lun) :
function: displays main print report menu to allow user to select
preprocessor reports to print. the following reports
are generated:
component properties
wall definitions
component geomtry
dependencies
parameters:
astat_lun : logical unit connected to file which will
contain the filenames of all reports files
generated during a preprocessor session
call probrep ()
function: prints report containing proble description and
charge information
parameters: none
call ptdepend (total_ depend)
function: saves the id numbers of the independent components
into the compg array, col. 14-17
parameters:
total _depend - total number of components in current
wall
call ptgroup (wall_name, wall index, itype, id, -
set_gen_flag, w_comp_tmp)
function: if itype = 1, places the w_comp_table spreadsheet data
for master and unique components for the specified
wall/roof area into the compg storage area. if
itype = 2, generated components from gencomp are placed
in compg. if itype = 3, frame components are placed fr
frame_table in compg. compg contains all required ‘”t
information for each component used in the building.
the rows within compg are never physically moved but
order is maintained thru the link list mlink. pointers

2083:
2094:
2095:
2096:
2097:
2098:
2099;
2100:
2101:
2102:
2103:
2104:
2105:
2106:
2107:
2108:
2109:
2110:
2111:
2112:

parameters:

to the beginning and end of the master/unigque

components are maintained in head and tail. pointers to
the beglnnxng and end of the generated nodes are
maintained in ghead and gtail. pointers to the beginning
and end of the frame components are maintained in fhead
and ftail.

compg contalns the following for itypes 1 & 2:

column
column
column
column
column
column
column
column
column
column

column
column

column

Ho®@-a2aines WwWhE

vy
(NYS]
e

13:

wall name

component material type (wood, concrete, etc)
component type (r/c beam, etc)

component property name (user assigned)
component id number

x1l coordinates of end or corner

¥l coordinates of end or corner

x2 coordinates of end or corner

y2 coordinates of end or corner

master compconent indicator

yes - master

no - unigue

center to center spacing

local direction

local x - generate in positive x direction
local y - generate in positive y direction
number of additional repeated components

compg contalns the following for itype 3:

column
column
column
column
column
column

column

column
column
column

column
column

AW
e oer owvoaw o »

9
10;:

11:
12:

wall name

area

wall index

itype

id

wall name - always frame

component material type (concrete or steel)
component type (r/c frame or steel frame)
component property name (user assigned)
component id number

x1 coordinate of blastward exterior column,
coordinates are in the local coordinates of
the blastward wall

vl coordinate of blastward exterior column,
coordinates are in the local coordinates of
the blastward wall

blank

: blank

set to no since no components may be generated
from this component

name of blastward wall

total frame height

- user assigned name of current wall/roof

index to wall geometry array
- indicates if storing master/unique,
generated or frame components
1l : master/unigque component
2 : generated component
3 : frame components
- id number of master component generated
valid only if itype = 2

set_gen_flag -~ indicates if gen_flag is to be set

w_comp_tmp

valid for generated components,

itype = 2
true - set gen flag for master component
used for generation to true oo

false - leave gen_flag alone
~ temporary storage for the row containing

the master component that components are to be
generated from. this is done since the work space,

| Saved: 4-28-93 2:37p APPENDIX.B -34

B e e e e o o o S S o e e e S P T O S S S S e gy RS S S S S S mEmmm——————— *
2113: work_table, is actually the same for master/unique (
2114: components and for the generated components.

2115

21161 = e e e e e e S S T T
2117: call ptmat (imat, icomp)

2118: function: places the comp_table spreadsheet data for the

2119: material property group specified by imat and

2120: icomp from the xmp storage array. xmp contains

2121: contains all required information for component

2122: material property used in the building. the rows
2123: within xmp are never physically moved but order is
2124; maintained thru the link list clink.

2125

2126:; xmp contains the following:

2127: column 1 : icn - identification based on material
2128: and selected subset component

2129: column 2 : component property name (user assigned)
2130: column 3 : weighting factor

2131: column 4 : beam width

2132: column 5 : beam thickness

2133: column 6 : loaded width

2134: column 7 : total weight

2135: column 8 : compressive concrete strength

2136: column 9 : steel yield strength

2137;: column 10: depth to tensile steel

2138; column 11: area tensile steel

2139: column 12: moment of inertia

2140: column 13: boundary condition

2141:

2142 parameters:

2143: imat - material indicator (
2144: 1 : concrete

2145; 2 : steel

2146: 3 : masonry

2147: 4 : wood

2148: icomp - number of subcategory which occurs under
2149: each material

2150: = meee e e e e e e S S S S S TS
2151: call reclwi (ncl,nel}

2152:

2153: cone way reinforced concrete slabs

2154:

2155: last modified —-=

2156: 7/03/91 (3pp)

2157: 01/27/93 (dds) - made moment of inertia be input, xim, rather than
2158: calculated value, im and added debugging prints
2159:

2160: purpose --

2161: data is read from and/or written to a direct access file.

2162:

2163: method --

2164: see theory manual

2165:

2166: input --

2167: ‘tapel5: direct access file with individual element data.

2168:

2169: output =--

2170;: tapel5 and arguments (see input discussion)

2171:

2172: restrictions

2173: none set in rclwi

2174: = mmemmm e e e e e e oSS S SS eSS oo k
2175: call rc2wi{nc2,nel)

| Saved: 4-28-93 2:37p APPENDIX.B -35 |
T o o v o e B A Y . " o " T - S = v o S by T e e e n
2177: two way reinforced concrete slabs

2178

2179: lagst modified -~

2180: 7/03/91 (jpp)

2181: 01/27/93 (dds) ~ made moment of inertia be input, xim, rather than
2182: calculated value, im; added iarch; and added debugging
2183: prints

2184

2185: purpose --

2186: data is read from and/or written to a direct access file.

2187

2188: method --

2189: see theory manual

2190:

2191: input --

2192: tapel5: direct access file with individual element data.

2193

2194: ocutput --

2185: tapel5 and arguments (see input discussion)

2196

2197: restrictions

2198; none set in rc2wi

21981 e e e e e e e e e e e e e e e
2200 call rcbmi (ncl,nel)

2201

2202: reinforced concrete beams

2203:

2204: last modified -~

2205: 7/05/91 (3jpp)

2206: 11/18/92 (dds) - made moment of inertia be input, xim, rather than
2207: calculated value, im

2208; 01/27/93 (dds) - added debugging prints

2209:

2210: purpose ~-

2211: data is read from and/or written to a direct access file.

2212:

2213: method --

2214: see theory manual

2215:

2216: input --

2217: tapelS5: direct access file with individual element data.

2218:

2219; output --

2220: tapel5 and arguments {see input discussion)

2221 :

2222: restrictions

2223: none set in rchmi

22281 | e e e e e e e e e e e e e e e e
2225: call rceci (ncl,nel)

2226:

2227: exterior reinforced concrete columns

2228:

2229; last modified --

2230: 7/05/91 (3pp)

2231: 01/27/93 (dds) - made moment of inertia be input, xim, rather than
2232: calculated value, im and added debugging prints
2233:

2234: purpose --

2235; data is read from and/or written to a direct access file.

2236:

2237: method --

2238: see thecory manual

2239:

2240; input --

tapel5: direct access file with individual element data.

output --=
tapel5 and arguments (see input discussion)

restrictions
none set in rceci

call rcici (ncl,nel)
reinforced concrete interior columns

last modified ——

7/05/91 (3jpp)

01/27/93 (dds) - made moment of inertia be input, xim, rather than
caleulated value, im and added debugging prints

purpose —-
data is read from and/or written tc a direct access file.

method --
in blast vulnerability guide, see section 5.0, figure 5.1*
and section 6.1 *

input --
tapel5: direct access file with individual element data.

cutput --
tapel5 and arguments (see input discussion)

restrictions (
none set in recici '

call rcmrfi {nr,nel)
reinforced concrete frames

last modified --
7/12/91 (jpp)
01/27/93 (dds) - made moment of inertia, xim and height of single story,
h, be inputs, rather than calculated values, im and h;
added debugging prints,added read for frame col. coord

purpose --
data is read from and/or written to a direct access file.

method -~
see theory manual

input --
tapelS: direct access file with individual element data.
ireclast last record number in direct access file
cutput --

tapel5 and arguments (see input discussion)

restrictions
none set in remrfi

call rcpsi (ncl,nel)
prestressed concrete beams k_

last modified --

2305 11/18/92 (dds) - created from rcbmi

2306

2307 purpose --—

2308: data is read from and/or written to a direct access file.
2309:

2310: method --

2311: in blast vulnerability guide, see section 5.0, figure 5.1*
2312: and section 6.1 *
2313

2314: input --

2315: tapelS: direct access file with individual element data.
2316:

2317: output --

2318: tapelS and arguments (see input discussion)

2319;

2320: restrictions

2321: none set in rchmi

23221 e e e e e e e e e e e B e e e e e e e
2323: call readat {name,w,xchg,ninc,dxchg,xb,nbop,

2324: 1 ndep,idep,nr,ireclast,iwrit)

2325:

2326: last modified --

2327: 7/15/91 (ipp)

2328: 11/19/92 {dds) - added xim to concrete beams read statement
2329: 12/01/92 (dds) - commented ocut write to screen

2330: 01/27/93 (dds) - modified all required reads and write for all
2331: other component types .
2332;

2333: purpose --—

2334; reads input data and calls the proper subroutine

2335:

2336: method ~-

2337:

2338:

2339: input --

2340:

2341:

2342; cutput --

2343;

2344:

2345: restrictions --

2346: none set in readat

23471 e mm e m e e e e e e e
2348: call readf (formna, usrdat, noinp, ier, ipos, term key, -
2349: legalt, numtrm)

2350: business systems integration

2351: (512) 680-3940

2352: copyright (c) 1988, 1989, 1990, 1891, 1992

2353: all rights reserved

2354 0 m e e e e e e e e e e e e B L i e e e
2355; call reflect{ zlog, pres, imp }

2356:

2357: last modified --

2358: 11/16/88 (tkb) initial release

2359;:

2360: purpcse --

2361: calculates reflected pressure and impulse

2362:

2363: method --

2364: uses fitted functions from arbrl-tr-02555 to calculate «
2365: reflected pressure and impulse

2366:

2367: input --

2368: variable zlog in argument list

| Saved: 4-28-93 2:37 APPENDIX.B -38 ;

o e ————— ot S SRS S =SS S S S S SSSmSmET T *
2369 !
2370 output =--

2371 no files, just variables pres and imp in argument list

2372

2373 restrictions --

2374

237S range of applicability:

2376:

2377 0.170 < z < 100,0 for z = 10.**zlog

2378: mmmemmmmm e e e S SSSSSSmaS oSS TTmTTTm T T
2379 call reset ()}

2380: functioeon: regsets required variables, forms, spreadsheets and

2381 common blocks to 0s or blanks for beginning of new

2382: problem.

2383 parameters:

2384 none

2385: = mmmmmemmmmmmm e e e e e oSS S mmo— S SmSSsm oSS SASmEo T m T
2386: call rightj {(chosen_value, char_variable, variable_ length)

2387 function: right justifies data within a variable, char_variable
2388: contains the data to be right justified. chosen_value
2389: contains the right justified data.

2390: = meemmmmmmmmmm e m e eSS oo S SSSmSS S oSSR T
2391: call rsort2d {array, nval, isortcol, numrow, numcol, idir, -

2392: ier)

2393 business systems integration

2394: (512)680-3940

2395: copyright (c) 1988, 1989, 1990, 1991, 1992

2396: all rights reserved

2397:

2398: function: sort a real array

2399: parameters: array real array to sort (
2400: nval number of values to sort

2401 isortcol column in array sort is based on

2402: numrow number of rows to sort

2403 numcol number of columns in array

2404: idir sort direction {1 ascending, -1 descending)

2405 ier 0 : no errors occurred during sort

2406 1 : isortcol exceeded number of columns in

2407: array

2408: mmmmmm e e e ST ST
2409: log = samecord (x, ¥, z)

2410 function: check if the 2 sets of coordinates specified in x, ¥y,

2411: and z are the same. the function returns a true if

2412 if the 2 nodes have the same coordinates and a false

2413: if the nodes are different

2414: parameters:

2415: x - array containing x coordinates for the 2

2416 nodes

2417: Y - array containing y coordinates for the 2

2418 nodes

2419; z - array containing z coordinates for the 2

2420: nodes

2421: mmmmmmm e e e S SSSmomSSmmSsTSSSSSTooTTETTTTTTTTT
2422; call savedata (input_file_name)

2423 function: saves data for currxent problem which is regquired

2424: for a later restart of the preprocessor.

2425: parameters:

2426: input_file name - name of file to save data to;

2427 contains full path

54281 emmmmmmmeemmmm e eSS TS oSS TS ETEE T ————
2429 call setcid (wall_index, i, §, table, maater)

2430: function: assigns a unique component id for the specified K
2431: component. the component id is generated in the

2432 following manner. the ten thousand and thousand

position are reserved for the wall number, the
1008, 10s and 1ls position are reserved for the
master or unique number a decimal point follows
and the decimal places refer to generated number

parameters:

wall index - index to wall geometry array

i - number of the master or unique component

3 - number of the generated component

table - ocutput variable which will hold the

generated id number

master - true : indicates a master or unique is
being generated so the decimal places
will be 0

false: slave is being generated, number
will be assigned in the decimal places
call setfid (table)
function: assigns a unigque frame id for the specified
frame, the frame id is generated in the
following manner. the ten thousand and thousand
position are 00 as copposed to regular components where
these positions are reserved for the wall number, the
100s, 10s and ls position are reserved for the
frame number and the decimal places are 00,

parameters:
table - output variable which will hold the
generated ld number

call sideon{ zlog, pres, imp)

last modified -—-—
11/16/88 (tkb) initial release

purposge -—-
calculates incident pressure and impulse

method --
uses fitted functions from arbrl-tr-02555 to calculate
pressure and impulse

input --
variable zlog in argument list

output --
no files, just variables pres and imp in argument list

restrictions --
range of applicability:
0.170 < z < 100.0 for =z = 10.**(zlog)

call spreadop (chosen value, option_key, col_position, -
row_position, col _width, drow, dcol, -
spread no, edited . | field, term key, inbuf, -
max rcws)
function: provides the pop—-up options on the spread sheet type
forma
parameters;
chosen value - returns values selected by user or
calculated by program
option_key - option key pressed on apreadsheet

| Saved: 4-28-93 2:37p APPENDIX.B -40 1 (
A e e e et o o o ke e e o e S S am S S S S oSS S S S S S s S *
2497: col_position - current column on spreadsheet

2498: row_position - current row on spreadsheet

2499: col_width - width of current column

2500: drow - current row position in screen coordinates
2501: decol - current col. position in screen cocrdinates
2502: spread_no - number of current spreadsheet

2503: edited_field - indicated if current field was edited

2504: 0 - field not edited

2505: 1 - field edited

2506: term_key - last key user pressed during option

2507: selection

2508: inbuf - character array containing spreadsheet
2509: values

2510: max_rows - maxirmum row in array used to store

2511: spreadsheet data, not necessarily the

2512: number of rows displayed on the

2513: spreadsheet. there could be less rows
2514: displayed

FB16: mmmmmmm e e e e e e S S TS T T T e
2516: call spreadop (chosen value, option_key, col position, -

2517: row_position, col_width, drow, dcol, -

2518: spread_no, edited field, term_key, inbuf, -

2519: max_rows)

2520: functicn: provides the pop-up options on the spread sheet type

2521: forms

25221 e e e e ST TS T
2523: call stbmi (ncl,nel)

2524:

2525: steel beams

2526: (
2527: last modified --

2528; 7/09/91 (jpp)

2529: 01/27/93 (dds) - added iten variable to read and write and added debuggin
2530: prints

2531:

2532: purpose --

2533: data is read from and/or written to a direct access file.

2534:

2535: method --

2536: see theory manual

2537:

2538: input --

2539: tapel5: direct access file with individual element data.

2540:

2541: output --

2542: tapel5 and arguments (see input discussion)

2543:

2544: restrictions

2545: none set in stbmi

DEAG: e m e e e e e e e S ST T
2547: call stecdi (ncl,nel)

2548:

2549: corrugated steel decking

2550: .

2551: last modified --

2552: 7/09/91 (jpp)

2553: 01/27/93 (dds) - removed h from input variable and made a constant;
2554: added debugging prints

2555: .

2556: purpose —-

2557; data is read from and/or written to a direct access file. (\
2558:

2559: method --

2560: see theory manual

input --
tapelS5: direct access file with individual element data.

cutput --
tapels and arguments (see input discussion)

restrictions
none set in stcdi

steel exterior columns

last modified --

7/10/91 (jpp) '

01/27/93 (dds) - added iten variable to read and write and added debugginc
prints

purpose --
data is read from and/or written to a direct access file.

method --
see theory manual

input --
tapel5: direct access file with individual element data.

output =--
tapel5 and arguments (see input discussion)

restrictions
none set in steci

. T Ty = e s S T T T Yy e e e M i e . M i T T o et o e S B W S M ML AR ey P T A A 2 ——

call stici (ncl,nel)
steel interior columns

last modified --
7/11/91 (jpp)
01/27/93 (dds) - added debugging debugging prints

purpcse --—
data is read from and/or written to a direct access file.

methed -~
in blast vulnerability guide, see secticon 5.0, figure 5.1
and section 6.1 *

input =--
tapel5: direct access file with individual element data.

ocutput --
tapelS and arguments (see input discussion)

restrictions
none set in stici

call stmrfi (nr,nel)

steel frames

last modified --
7/12/91 (jpp)

01/27/93 (dds) - made single story height, h, be input; removed idc
as input; removed calc of h; added debugging prints
added read for col.coord.

purpose --
data is read from and/or written to a direct access file.

method --
see theory manual

input --
tapel5: direct access file with individual element data.

ireclast last record number in direct access file

output -—-
tapel5 and arguments (see input discussion}

restrictions
none set in stmrfi

..__.h_..____-_.._.______..__.....__._..______..__...__..___............-___....._-______...._.___....-___..

call stmswi (ncl,nel)
metal stud walls

last modified --
7/12/91 (jpp) .
01/27/93 (dds) - added debugging prints, all reference to ioptbc=2
removed

purpose -- (
data is read from and/or written to a direct access file.

method --
see theory manual

input -~
tapel5: direct access file with individual element data.

output =--
tapel5 and arguments (see input discuasion)

restrictions
none set in stmawi

_____...,-.______..—__—_--_—_-_---—______-_...____-__.....———____..___....—___—_____

call stowji (ncl,nel)
open web steel joists

last modified --
7/08/91 (jpp)
01/27/93 {dds) - removed variables from read and write which are no
longer required; added debugging prints, all
reference to web shear failure deleted

purpose --
data is read from and/or written to a direct access file.

method --
see theory manual

o

input --
tapel5: direct access file with individual element data.

output --
tapel5 and arguments (see input discussion)

restrictions
none set in stowji

call sum(dam,bd,br,bu)

last modified --
7/10/81 (map, ipp)

purpose --
summation of building damage

method --

input --

output --

restrictions --
none set in sum

S v o o =S T A T S —————— ———— i T o T ———— - T W Y A A e i

call threat (r, w, iopt2)

last modified --
8/16/90 {magq)

purpose -—-
definition of charge weight and standoff from common building

method ~-
charge weight and standoff are directly input

input --
none

cutput --
charge weight and standoff

restrictions
charge weight must be a value between 35.0 and 4000.0 pounds

e s s s e S P W AP R . S S S U M M U S ————— " o 7 oo ko ol A 4 S Al Vi e oAl S S T A

call wupdatgen (wall_name, wall index, ier)

function: checks all master/unique components for the specified
wall to determine if any master components have not
been generated. if a master is found whose components

have not been generated, the components will be generated

and the generated flag updated.
parameters:
wall name - name of current wall/roof area
wall index - index into the wall area used to
access wall number for current wall name
ier - 0 : no error occurred
1l : one or more required pieces of data
in missing from the current master

—— ——————— - ————— T itk St " Ty = o ek e Ak L L L L S A T T S T T 5 P A S ————

call validchg (lun, fatal error, error_occurred, -
total_ fatal, total_warnings)
function: check the position of the charge to determine if the
charge’s location meets minimum requirements of program

| Saved: 4-28-93 2:37p APPENDIX.B -44] .
S it >
2753 ; these are that the scaled standoff is greater than (
2754 1.0 ft/1b~(1/3) and that charge cannot be ingide building
27155: or over roof. also issues warnings when charge is within
2756: scaled standoff of 3.0 ft/ib~(1/3) or when charge height
2757: off ground to standoff ratio is less than 5.0 since

2758: : this may invalidate surface burst assumption in blast
2759: loads calculations.

2760: parameters:

2761: lun : logical unit number of file messages
2762: are written to if to_screen if false
2763: fatal_error : logical variable indicating if fatal
2764: error occurred. this variable is

2765: initialized once at the beginning of
2766: the validation process to false and set
2767: to true each time a fatal error occurs
2768: £ - no error occurred

2769: t - fatal error occurred

2770: error_occurred : logical variable indicating if a

2771 _ fatral error occurred in the checking
2772 done by this subroutine

2773: total_ fatal : total number of fatal errors

2774: total warnings : total number of warning errors

2775: mmmmmmmmemmmmmmmmmmmmmomomeem—ssooo oSS mom T ooSomoESmoTEEaTTEmmm T
2776; call validcmp (lun, fatal_error, error_occurred, -

2777: total_fatal)

2778: function: performs validation checking of component properties.
27179: 1. no component has an undefined value.)

2780: 2. no component has a value less than or equal to 0.
2781: 3. components have unigue name for each category.

2782: parameters: -
2783: lun - logical unit number for error output (
2784: file

2785: fatal_error - logical variable indicating if fatal
2786: error occurred, this variable is initialized once
2787: at the beginning of the validation process to false
2788: and set to true each time a fatal error occurs

2789: £ - no error occurred

2790: t - fatal error occurred

2791: error_occurred - indicates error occurzed in this

2792: category

2793

2794: total_fatal - total number of fatal errors

5985: smmmmemmmmmmmm—em S e mm o oomme oSS sSSS S ST Som o SSomSSSmEImmmmm T
2796: call wvalidpnd (lun, fatal_error, error_cccurred, -

2797: total fatal, total warnings) -

2798: function: performs validation checking of dependency data. the
2789: following checks are made:

2800: 1. total number of dependency pairs are checked to

2801: see if they exceed the maximum allowable numbex

2802: of pairs (fatal)

2803: 2. each wall/roof area is checked to see if the

2804: dependencies for that area have been generated,

2805: (warning)

2806: 3. each row of compg is checked to see make certain
2807: ' that all independent ids in the row are unique

2808: within that row. (fatal)

2809: 4. each independent id is checked to make sure that
2810: it has a corresponding dependent id within compg.
2811: {fatal}

2812: parameters:

2813: lun : logical unit number of file messages
2814: are written to if to_screen if false (
2815: fatal error : logical variable indicating if fatal

2816: error occurred. this variable is

| Saved: 4-28-93 2:37p APPENDIX.B =45 i
I s i s e s {1 S S T T il iy o} o ok o T S o A kb o oy . i S o e e *
2817: initialized once at the beginning of
2818: the validation process to false and set
2819; to true each time a fatal error occurs
2820: f - no error occurred

2821: t - fatal error occurred

2822: error_occurred : logical wariable indicating if a

2823: fatal error occurred in the checking
2824: done by this subroutine

2825: total fatal : total number of fatal errors

2826: total_warnings : total number of warning errors

2B27: | mmmmmmm e e e e e e e e
2828: call wvalidwal (lun, fatal error, errcr_occurred, -

2829: total fatal, total warnings)

2830: function: performs validation checking of wall data.

2831: 1. no walls may have identical coordinates

2832: 2. wall names must be unique and no wall/roof may
2833: be named frame.

2834: 3. no blank coordinates

2835: 4. coordinates in a wall must be planar

2836: 5. coordinates were entered in clockwise or

2837: counterclockwise ordex

2838: €. y coordinates must be non-negative

2839: 7. 3rd coordinate must > 4th coordinate

2840: 8. walls must connect

2841: parameters:

2842: lun ¢t logical unit number for error output
2843: file ;
2844: fatal error : logical variable indicating if fatal
2845: error occurred. this variable is
2846: initialized once at the beginning of
2847 the validation process to false and set
28481 to true each time a fatal error occurs
2849: f - no error occurred

2850: t - fatal error occurred

2851: error_occurred : indicates error occurred in this

2852: category

2853: ‘ total_ fatal : total number of fatal errors

2854: total warnings : total number of warning errors

2855: | mmmemm e e e e e e e e e e e e — —— —t ———
2856: call validwemp (lun, fatal error, error_occurred, -

2857: total_fatal, total warnings)

2858: function: performs validation checking of wall component

2859: definition data.

2860: 1. check if component type is defined

2861: 2. check if component property name is defined

2862: 3. check if mismatch occurs between material type
2863: and component type

2864: 4. check if mismatch occurs between component type
2865: and component property name

2866 5 check if component property name for each item in
2867: compg is in xmp table

2868: 6 check for component specific type errors (done
2869: by itypechk which is called by chkcomp)

2870: 6. coordinates for a given wall must be unique

2871: ' 7 coordinates of component must be in bounds of

2872: wall.

2873: 8. walls must connect

2874: 9 coordinates must define legitimate beam or plate
2875: parameters:

2876: lun : logical unit number of file messages
2877: are written to if to screen if false
2878: fatal _error : logical variable indicating if fatal
2879: error occurred. this variable is

2880: initialized once at the beginning of

| saved: 4-28-93 2:37p APPENDIX.B -46 i

2 e o o o b e S e i o o S S S T S S S A A S S S _—————— *
2881: the validation process to false and set (
2882: to true each time a fatal erxror occcurs
2883: f - no error occurred

2884: t - fatal error occurred

2885: error_occurred : logical variable indicating if a

2886: error occurred in the checking

2887: done by this subroutine

2888: total fatal : total number of fatal errors

2889: total_warnings : total number of warning errors

DBG(: e e e e e e e e e e e ST S C ST T T T s
2891: int = wallchk (wall_ index)

2892: function: to check if four nodes in wall area in row "wall index"
2893: are coplanar and if four nodes are entered either

2894: clockwise or counterclockwise and print error message
2895: detailing any error that is located

2896: if there are no problems the wallchk = 0

2897: if there are problems, wallchk = 1

2898: parameters:

2899: wall index - index into the wall area used to

2900: access wall number for current wall name

ZGOL: s e e e e e TS SS S SS ST T oo
2902: call walldef (ier)

2903: function: allows user input of the wall/roof areas, user

2904: inputs a 10 character unique name for the area

2905: followed by the global x, y and z coorindates for

2906: the four corner points. a maximum of 50 unique wall/roof
2907: areas are allowed. this maximum is set in sprdhead.dat.
2908: the dimensioning of wall_table allows for up to

2909: max_row_ever columns. the following checks are

2910: performed by walldef:

2911: 1. checks if user changed name of a wall/roof area (
2912: so that compg can be updated., the old name

2913: becomes the new name in compg.

2914: 2. checks for a deleted row in the wall/rocf table
2915: so that compg is kept current. all references

2916: to that wall/roof area are deleted from compg.

2917: 3. checks that all wall/roof areas have unique names.
2918: 4. checks that no wall/rocf area has the name frame,
2919: since this is a reserved word.

2920: 5. checks if 2 wall/roof areas have identical

2921: coordinates.

2922: 6. checks if a wall/roof area has 2 identical nodes.
2923: 7. checks for overlapping or gaps in wall/rocof areas
2924:

2925: wall table contains the following data in each column:
2926:

2927: 1 user defined unique name (user entry)

2928: 2. global x coordinate for lst corner point (user entry)
2929: 3. global y coordinate for 1lst corner point (user entry)
2930: 4. global z coordinate for lst corner point (user entry)
2931: 5, global x coordinate for 2nd corner point (user entry)
2932: 6. global y coordinate for 2nd corner point (user entry)
2933; 7. global z coordinate for 2nd corner peint (user entry)
2934: 8 global x coordinate for 3rd corner point (user entry)
2935: ' 9. global y coordinate for 3rd corner point (user entry)
2836: 10. global z coordinate for 3rd corner point (user entry)
2937: 11. global x coordinate for 4th corner point (user entry)
2938: 12. global y coordinate for 4th corner point (user entry)
2939: 13. global z coordinate for 4th corner point (user entry)
2940: 14. wall id number (program use) ‘

2%41: 15. characters 1-3 number of components for wall

2942: area (program use) k
2943: characters 8-9 used for roof connectivity in

2944: bldgchk (program use)

2945: character 10 used to indicate if dependencies have
2946: been generated:

2947: t - dependencies have been generated for

2948: current wall/roof area

2949: f - dependencies have not been generated for
2950: current wall/roof area

2951: parameters:

2952: ier - 0 : no errors occurred

2953: 1 : duplicate wall/roof names

2954: 2 : 2 wall/roof areas have identical
2955: coordinates

2956 3 : a wall/roof area has 2 identical
2957: nodes

2958: 4 : wall/roof area not coplanar

2959: 5 : overlap or gap in wall/roof area(s)
2960: 6 : problem in connectivity

296l s e e e e e e e e e e e e e e e e
2962: log =n wallok (iun, to_screen, fatal error, -

2963: error_occurred, total fatal, total warnings)

2964: function: “checks if the wall/roof areas match together at corners
2965: to form a building without gaps or overlapping wall
2966: areas. if a problem is found, the function returns
2967: false after printing cut an error message. a true
2968: issued by this subroutine does not gquarentee that the
2969: building is well defined, but a false is indicative
2970: that there is a problem,

2971: parameters: -
2972; lun : logical unit number of file messages
2973: are written to if to_screen if false
2974 to_screen : logical variable indicates where

2975: error messages will be displayed

2976: t : display to screen

2977: f : send to file indicated by logical
2978: unit lun

2979; fatal_error : logical wariable indicating if fatal
2980: error occurred. this variable is
2981: initialized once at the beginning of
2982: the validation process to false and set
2983: to true each time a fatal error occurs
2984: f - no error occurred

2985 t ~ fatal error occurred

2986: exrror_occurred : logical variable indicating if a

2987: fatal error occurred in the checking
2988: done by this subroutine

2989: total fatal : total number of fatal errors

2990: total warnings : total nmnber of warning errors

299137 | mmem e eme e
2992; call wallrep ()

2993: function: generates the wall definition’s report sorted by the
2994: wall name. +two reports are reguired to provide all
2995: information. the first report prints the wall/roof
2996: name with coordinates of corner 1 and corner 2. the
2997: second report prints the wall/rcof name with

2998: coordinates of corner 3 and corner 4.

2999: parameters:

3000: none

30001 e e e e e e e e e e e e e e e e e —— e
3002: call wdamrep (wall name)

3003: function: prints report on damaged components for specified wall,
3004: one of two reports is generated, depending on if the
3005: it is a standard wall/roof area or a frame. the report
3006: contains the following information:

3007: for non-frame components:

3008: damaged building components report -

e o o o e e i o S S S L O (T ek S L e S R S

—————————— x
component type (
percent damage
component local coordinates
repair or replace
p-i diagram terms, pbar
p-i diagram terms, ibar

for frame components:
damaged building components report -

component type

percent damage

blastward wall name

component local coordinates

repair or replace

p—i diagram terms, pbar

p-i diagram terms, ibar

parameters:
wall name : user assigned name of wall/roof area,

unless the area is a frame in which
case the program assigned the area name
of frame

-...--———---—_—_--.——._—_—---—a—-—_—_--._-—-———_—-__.-.———_——__-__.——-n_-_—___--

call wdbmi (ncl,nel)
wood beams

last modified --
7/08/91 (jpp) ;
01/28/93 (dds) - made moment of inertia be input, xim, rather than
calculated value, im; added sigy; added debugging
prints; .
modified ci and cp . (‘

purpose --
data is read from and/or written to a direct access file.

method --
see theory manual

input --
tapel5: direct access file with individual element data.

output --
tapelS and arquments (see input discussion)

restrictions
none set in wdbmi

- — e o o e . A e 7k A S i T e e A . e S A N S o S AL S S S

call wdeci (ncl,nel)

exterior wood columns

last modified —-

7/08/91 (3ipp)

01/27/93 (dds) - made moment of inertia be input, xim, rather than

. calculated value, xim; added sigy; added debugging print:
modified ci and ¢p

purpose --
data is read from and/or written to a direct access file.

method --
see theory manual (

input --

v — A A S AL . — . e S T A . o T i o — o oy T o ok S

e b A W T il e e e e e e s (R L e e e e T .

cutput --
tapelS and arguments (Zee input discussion)

restrictions
noene set in wdeci

e T i o e B B T T e M - T — T T - - - — -

intericr wood columns

last modified --
7/08/91 (jpp)
01/28/93 (dds) - made moment of inertia be input, im, rathexr than
calculated value; added debugging prints

purpose --
data is read from and/or written to a direct access file,

method --
see thecry manual

input --
tapelS: direct access file with individual element data.

output --
tapelS5 and arguments ({see input discussion)

restrictions
none set in wdici

[——————— P T T PR R ——————,

call wdrfi (ncl,nel)
wood roofs

last modified --
7/11/91 ({ipp)
01/28/93 (dds) - added sigy; added debugging prints
modified ci and cp

purpose --
data is read from and/or written to a direct access file.

method =~
see theory manual

input --
tapelS5: direct access file with individual element data.

output -=-
tapel5 and arguments (see input discussion)

restrictions
none set in wdrfi

—————————— T A AP AN S T . i A Al S A

call wdwli (ncl,nel)
wood walls

last modified -- s
7/11/91 (3jpp) o
01/28/93 (dds) - added sigy to read and write and added debugging

prints

| Saved: 4-28-93 2:37p APPENDIX.B -50 { f
A o o o o i ke S A D o o S A Tt (D D D R TR AR S A ST W AT - SRS S S SSSsms——— *
3137 modified ci and cp

3138

3139: purpose --

3140 data is read from and/or written to a direct access file.

3141:

3142 method --

3143 see theory manual

3144

3145 input --

3146 tapelS5: direct access file with individual element data.

3147

3148 output --

3149: tapel5 and arguments (see input discussion)

3150

3151 restrictions

3152: none set in wdwli

FLBF: e e e e e e e e e e ST TS ST T TRE s
3154; int =wnindex {comp_id)

3155 function: strips the wall area number off the component id number
3156 and searches wall table until it finds the row with

3157 this wall area number in column 14. the function name
3158: wnindex returns the row number. if the id number is

3159 for a frame component (00 are first 2 digits), the

3160 index into wall_table for the blastward wall is returned
3161 in the function name

3162: parmaeters :

3163 comp_id : component id which needs a

3164: corresponding wall index

F165: | e e e e e e e e e e e e e S SS ST E T T
3166; call wrthead (lun, itype, line kt) i
3167 function: writes column headers based on itype and increments the (
3168: line counter, line_kt, based on number of lines written.
3169: itype subroutine report

3170 1 mbamrep 1

3171: 2 wdamrep 1 non-frame

3172: 3 wdamrep 1 frame

3173 4 blstrep 1 non-frame

3174: 5 blstrep 1 frame

3175: parameters:

3176: lun : logical unit connected to report file

3177 itype : type of header to be printed

3178 line_kt : current number of lines written to report file
31791 e e e e e e e e e e e e e S S m TS S SR ST
3180: call =xylimit (to_screen, lun, wall_index, xmax, ymax, -

3181: xmin, ymin, ier)

3182:

3183: function: to calculate the maximum and minimum local coordinates
3184: in the wall area in the row of wall table indentified
3185: by the pointer wall index -

3186: parameters:

3187: to_screen - logical variable indicates where

3188: error messages will be displayed

3189: t : display to screen

3190: £ : send to file indicated by logical
3191: unit lun

3192: lun - logical unit number for error output
3193 file

319%4: wall index - index into the wall area used to

3195: access wall number for current

3196; wall name ‘

3197: xmax - maximum x value for specified wall (
3198: ymax - maximum y value for specified wall -
3199: xmin - minimum x value for specified wall

3200: ymin - minimum vy value for specified wall

ier - error flag
0 : no errors occurred
1 : all coordinates for current wall
were 0
2 : error occcurred converting wall
coordinates from character to
real
3 : wall name not defined
call xyz2 (windex, Jj, xyz, x)
function: finds global x,y,z coordinates of j local coordinates
in vector x and places them in vector xyz. the local
coordinates in x are in the wall area designated by
the row pointer windex in wall table. each point in
x has 2*j coordinates. each point in xyz has 3+
coordinates.
parameters:
windex : index intc the wall area used to access wall
number for current wall name

3 : number of coordinates sent; should be no
more than 4 pairs of coordinates
xyz : global coordinates

—————— T ——— Ty Y " o P T T S e - T - r —

call xyzcoord (mindex, xyz, id)
function: finds global x,y,z coordinates of two component endpoints
or corner points for component in row ‘mindex’ in -
compg matrix if mindex > 0
if mindex=0), then the the variable “id’, which should
contain the the component id number, is used to determine
mindex
{xyz (i) ,i=1,3) global coordinates of first point
{(xyz{i),i=4,6) global coordinates of second point
parameters:
mindex : flag indicating to use component id or row #

0 - flag to use component id to find desired
component in compg and place component
endpoints in xyz

>0 - row in compg for coordinates to be
placed in xyz

xyz : global coordinates of the two endpoints
of the desired component
id : id number of desired component, only used

if mindex = {

Appendix C

Description of Primary Subroutines Called in the FACEDAP Code
that are Unique to Single Component Analysis

Revision 1.2
5/20/94

oy

D o T T]] T T . T " — T T _— T T T N 8 e ke A Ak L - S S L N S A . S " ———

call bleoadc ()

function: This routine is designed for future expansion when
the user is allowed to enter the charge informaticn
by charge weight, standoff and free-field or reflected
or by blast pressure and impulse

parameters: none

call comprep ()

function: Prints report on component damage for Single Component
Analysis

parameters: none

call cprphead (lun, itype, report, line kt)

function: Writes column headers for the COMPONENT Preprocessor
Component Property reports based on itype and report and
increments the line counter, line_kt, based on number
of lines written.

itype property # reports
1 RCBMI 2
2 RCIWI 2
3 RC2WI 2
] RCECI 2
5 RCICI 2
6 RCMRFI 2
7 RCPSI 2
8 STBMI 2
9 STMSWI 1
10 STOWJI 1
11 STCDI 2
12 STECI 2
13 STICI 2
14 STMRFI 2
15 MAULIWI 2
16 MAUZWI 2
17 MARIWI 2
18 MAR2WI 2
19 MAPILI 2
20 WDWLI 2
21 WDRFI 2
22 WDBMI 2
23 WDECI 2
24 WDICI 2
parameters:
lun : logical unit connected to report file
itype : types of header to be printed
report : indicates which report to print for the

specified itype (1 or 2)
line_kt : current number of lines written to report file
call filxist2 (input_ file name, ier)
routine : FILXISTZ
function : Allows user to select the COMPPREP file name to save
the file under. The default is the current file name.
Issues warning message if the selected file already
exists. User then has the choice of writing over the
existing file or aborting the save.

parameters :

input_file_ name : Current Preprocessor file name
selected by user. Contains full
path
ier : 0 - 3ave file
: 1 - Do not save file

e e e —— —— 1 4 W T T S T (V) ———)

—— * s
65: call getcomp (input_file_name) (
66: function: Retrieve data for current problem which is required
67 for a restart of the COMPONENT Preprocessor, COMPPREF.

68: parameters:

69: input_file_name : name of file to retrive data

70 from; contains full path

T1: e oo e e S S ST
72: call getdefct (mat name, menu, num_comps)

73: function: Provides a pop-up menu for COMPPREP of all component

T4: types which has properties defined for them. This is

75: done by checking the XMP array.

76: parameters: mat_name -~ material name of selected material

77: menu - array to store component types that have

78: been used

79: num_comps - total number of component types that have

80: been used

Bl: mmmemm e e e e e e T T T T e
82: call getdefmt (menu, num_mats)

83: function: Provides a pop-up menu for COMPPREP of all materials

84: which has properties defined for them. This is done

85: by checking the XMP array.

86: parameters: menu - array to store material names that have

87: been used

88: num_mats - total number of materials that have been used
BO; e e e ST T T TR T
90: call getspred {spread no, ier)

91: function: Reads all required variables for the specified

92: spreadsheets from the data file SPRDHEDZ2.DAT.

93: This routine is used by COMPPREP.

94: The following values are read: -
95: 1. Spread no (
96: 2. Number of columns on spreadsheet

97: 3, Number of rows on spreadsheet

98: 4. Number of column header lines

99: 5. Column Headers

100: 6. Help text

101: 7. Variable type for each column (i.e. character,

102: integer, real)

103: 8. Number of defaults

104: 9. Column numbers of columns which have default settings

105: 10. Default value for the default columns

106: 11. Fields where duplication on spreadsheet allowed

107: 0 - field can be duplicated

108: 1 - field can not be duplicated

109: parameters:

110: spread no - number of spreadsheet to retrieve data for

111: ier - 0 : no error occurred

112: 1 : error occurred opening file,

113: SPRDHEAD .DAT

114: 2 : error occurred reading SPRDHEDZ.DAT

115: = mmme—emm e e e e e S oSS ST SRS S S EeTTT

116: call getvars (spread no, col_position, calc_type)

117: function: Used by spreadop for determining the columns used in

118: default calculations. Based on the spreadsheet number,

119: . spread no and the column position on the spreadsheet,

120: col _position, the required column nunbers are returned

121: along with an indicator of the egquation to be used for

122: calcluating. This routine is used for the Component

123: Analysis, COMPPREP.

124: et o o e m —m S S S S m RS S S ST EEE T

125: call gtshort (comp_ type name, icomp, imat, ier)

126: function: Uses the specified component property name to find k

127: the icomp and imat that corresponds to the specified

128: type. Comp_type_name is the full name.

129 parameters:

130: comp_type_name :@ name of component type

131: icomp : component # with a given material group
132: imat : material #

133; ier : 0 - no error occurred

134: 1l - component type name not found

135: = @ memmemm e e e e e e
136: call initcomp ()

137: function: Initializes the COMPDEF.FRM with the first component

138: it finds in XMP.

139: parameters: none

140: | e e e e e e e e e e e
141: call inpfil2 (file_name, pattern, ier)

142: function: This routine was modified from the IOSUB INPFIL routine.
143: This routine has been specifically modified to strip off
144: the .BLG extension. Calling with any other extension

145: will require modification of this code

146; parameters: file name file to search for

147: pattern input pattern

148: ier error code, O=normal, l=error

149: e e e o o e e e e e e
150: call optionb (usrdat, key pressed, form number, ipos)

151: function: Provides the options for forms in BDAMPREF and COMPPREP.
152: parameters: :

153: usrdat : array containing form data

154: key pressed : keystroke user left form with and

155: is used as an input parameter into -

156; this routine to determine action to

157: take

158: form number : number of form being edited

159: ipos : current row number in form {usrdat)

160: ' when entered this routine

1611 e e e e e e o e e e e e e
162; call probrep2 ()

163: function: Prints report containing problem description and

164: load information for the Single Component Preprocessor

165: parameters: none

166; = = | =mmmmmecmemmeeo e e e e e e e e e e e
167: call resetc ()

168: function: Resets required variables, forms, spreadsheets and

169: common blocks to 0Os or blanks for beginning of new

170: problem for the Component Preprocessor, COMPPREP.

171: parameters:

172: none

1731 s e e e sl
174: call savecomp (input_file name)

175: function: Saves data for current problem which is required

176: for a later restart of the COMPONENT Preprocesscr,

177+ COMPPREP .

178: parameters:

179: input_file name - name of file to save data to;

180: contains full path

	COVER
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1.0 INTRODUCTION
	2.0 FLOW DIAGRAMS FOR THE PRIMARY EXECUTABLES IN THE FACEDAP CODE
	3.0 SOFTWARE USED TO PROGRAM THE FACEDAP CODE
	4.0 MODIFYING THE PROBLEM SIZE WHICH CAN BE ANALYZED WITH THE FACEDAP CODE
	5.0 COMPILING AND LINKING THE FACEDAP CODE
	REFERENCES
	APPENDIX A INDENTED CALLING TREES FOR THE FACEDAP PROGRAM
	APPENDIX B DESCRIPTION OF PRIMARY SUBROUTINES CALLED IN THE FACEDAP CODE FOR BUILDING ANALYSIS AND SINGLE COMPONENT ANALYSIS
	APPENDIX C DESCRIPTION OF PRIMARY SUBROUTINES CALLED IN THE FACEDAP CODE THAT ARE UNIQUE TO SINGLE COMPONENT ANALYSIS

